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Convolution symmetries of integrable
hierarchies, matrix models and 7-functions

J. HARNAD AND A. YU. ORLOV

Generalized convolution symmetries of integrable hierarchies of KP and 2D-
Toda type act diagonally on the Hilbert space % = L?(S!) in the standard
monomial basis. The induced transformations on the Hilbert space Grassman-
nian Gry, (%) may be viewed as symmetries of these hierarchies, acting upon
the Sato—Segal-Wilson t-functions, and thereby generating new solutions of
the hierarchies. The corresponding transformations of the associated fermionic
Fock space are also diagonal in the standard orthonormal basis, labeled by
integer partitions. The Pliicker coordinates of the image under the Pliicker
map of the element W € Gry, (#) defining the initial point under the com-
muting KP flows are the coefficients in the single and double Schur function
expansions of the associated r-functions. These are therefore multiplied by
the eigenvalues of the convolution action in the fermionic representation.
Applying such transformations to standard matrix model integrals, we obtain
new matrix models of externally coupled type whose partition functions are
thus also seen to be KP or 2D-Toda t-functions. More general multiple
integral representations of tau functions are similarly obtained, as well as finite
determinantal expressions for them.

1. Introduction: convolution symmetries of 7-functions

Solutions of integrable hierarchies of KP and 2D-Toda type are determined
by their r-functions [Sato 1981; Sato and Sato 1983; Segal and Wilson 1985].
Infinite sequences of such KP z-functions {t(N,?)}yez, depending on the
infinite set of commuting flow parameters ¢t = (¢1,?,, ...) and an integer lattice
label N, may be associated in a standard fashion (see references just cited) to
elements of a “universal phase” space, viewed as an infinite Grassmann manifold
or flag manifold. These satisfy the Hirota bilinear equations of the KP hierarchy
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248 J. HARNAD AND A. YU. ORLOV

and also, in certain cases (e.g., exponential flows of matrix model integrals
induced by trace invariants), the equations of the Toda lattice hierarchy.

The t-functions may be expanded as infinite series in a basis of Schur functions
sy, (1), labelled by integer partitions A = (A; > Ay > --->0)

t(N.1) =) mn(M)sp (o). (1-1)
A

In the approach of Sato and Segal-Wilson [Sato 1981; Segal and Wilson 1985],
the coefficients 7 (A) are interpreted as Pliicker coordinates of the image % (W)
of an element W of a Hilbert space Grassmannian Gry (%) under the Pliicker
map

P : Grye (#)—>P(F) (1-2)

into the projectivization of the semiinfinite exterior space % := A ¥ (the Fermionic
Fock space). In [Segal and Wilson 1985], the Hilbert pace % is chosen as the
square integrable functions L2(S!) on the unit circle in the complex z-plane and
the elements of Grye, () are subspaces of # = L?(S') that are “commensurable”
with the subspace # C 7€ of functions admitting a holomorphic extension to
the interior disk.

The image P(Grye, (¥)) of the Grassmannian under the Pliicker map consists
of all decomposable elements of A, which is the intersection of the infinite
set of quadrics defined by the Pliicker relations. The latter are equivalent to
the infinite set of Hirota bilinear differential relations [Jimbo and Miwa 1983;
Sato 1981; Sato and Sato 1983] for t(N, t), which are the defining property of
t-functions. Through the Sato formula for the Baker—Akhiezer function

soo 2 TNt =[z71])

Un(z,t)=e , ETNi=Eh 2R3 ),
NGD) o FEET T
(1-3)
these equations are equivalent to the KP hierarchy and their associated Lax

equations.

The 2D-Toda hierarchy [Jimbo and Miwa 1983; Ueno and Takasaki 1984] can
similarly be expressed in terms of t-functions depending on N, ¢ and a further
infinite sequence of flow parameters f = (71,75, ...). These admit double Schur
function expansions [Takasaki 1984]

@ 1,5) =) "> By, w)si(0)su(f), (1-4)
AM

in which the coefficients Bp (A, i) have a similar interpretation in terms of
Pliicker coordinates. They also satisfy an infinite set of bilinear differential Hirota-
type relations in both sequences of flow variables and difference-differential
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equations relating different lattice points. For fixed N, they include the KP
Hirota equations of the KP hierarchy in each of the two sets of flow variables, so
we refer to them as 2D-Toda tau functions.

Starting with any given t-function of KP-Toda or 2D-Toda type, it will be
shown in the following that new 7-functions can be constructed, satisfying the
same sets of bilinear relations, having the following Schur function expansions:

Co(@)(N.1) =D r(N)mn (M5 (0), (1-5)
A
CA D) (N.1.7) = ; YN By (s i (N)sy ()5 (F), - (1-6)
"

where the factors ry (N), 73, (N) are defined in terms of a given pair of infinite
sequences of nonvanishing constants {r; }icz, {¥i }iez through the formulae

n(N):=c (N) 1_[ IN—i+j, Tu(N):=cz(N) 1_[ FIN—k+1-  (1-7)
(i,j)EA (k,DHeu

Here the products are over pairs of positive integers (i, j) € A and (k,/) e u
that lie within the matrix locations represented by the Young diagrams of the
partitions A and pu, respectively,

ar(N) =]

i=1

PN—i ’ (1-8)
P—i

and
1= pi .

Pi—1
The sequence of nonvanishing parameters {p; } may be viewed as Fourier coeffi-
cients of a function p(z) on the unit circle, or a distribution. It will be shown
(Proposition 3.1) that, in terms of the elements of the subspace W C L2(S!)
corresponding to a point of the Grassmannian, the transformations (1-5), (1-6)
mean taking a generalized convolution product with p(z) (and similarly for 7;).
These will therefore be referred to as (generalized) convolution symmetries.

With the usual 2D-Toda flow parameters (¢, ) fixed at some specific values,
such transformations extend to an infinite abelian group of commuting flows
whose parameters determine the p;’s. This has been used to generate new classes
of solutions of integrable hierarchies [Bettelheim et al. 2007; Orlov 2006; Orlov
and Scherbin 2001]. In the present work, they are studied rather as individual
transformations, for fixed values of the parameters p; which, when applied to a
given KP-Toda or 2D-Toda t-function, produce a new one. Particular cases that
implicitly use such transformations as symmetries have found applications, for
example, as generating functions for topological invariants related to Riemann

(1-9)
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surfaces, such as Gromov—Witten invariants and Hurwitz numbers [Okounkov
2000; Okounkov and Pandharipande 2006].

As an immediate application, we may start with an integral over N x N
Hermitian matrices:

ZN(t):/M N Ndu(M)e“Z?il’fM’} (1-10)
e X

where dpu is a suitably defined U(N') conjugation invariant measure on the space
HN*N of Hermitian N x N matrices,. This is known to be a KP-Toda t-function
[Kharchev et al. 1991]. Applying a convolution symmetry (1-5) with p(z) taken
essentially as the exponential function e? on the unit disc, and evaluating at flow
parameter values

[izlltr(Ai), t=[A]=(l1,l2,...), (1-11)

for a fixed N x N Hermitian matrix 4 we obtain, within a constant multiplicative
factor, the externally coupled matrix model integral (Proposition 4.1):

N-1

e = (T] i) Eyzmad. a2

i=1

ZnoullAD = [
M eHN x>
Such integrals arise in a number contexts, such as the Kontsevich—Witten gener-
ating function [Kontsevich 1992], the Brézin—Hikami model [Brézin and Hikami
1996; Zinn-Justin 1998; 2002] and the complex Wishart ensemble [Silverstein
and Bai 1995; Wang 2009]. More general choices for the function p(z) are
shown in Proposition 4.2 to also determine KP-Toda t-functions as externally
coupled matrix integrals. It is further shown, in Proposition 4.3, that these matrix
model t-functions can be expressed as finite N x N determinants.
Similarly, Hermitian two-matrix integrals with exponential coupling of Itzykson—
Zuber type [Itzykson and Zuber 1980]

2 ~
7P, 7) =
/ du(My) di(My) etr(Zfil(tiMf-i—f,-Mé)—i-Mle) (1-13)
MlEHNXN MZEU-I]NXN
are known to be 2D-Toda 7-functions [Adler and van Moerbeke 1999; Harnad
and Orlov 2002; Harnad and Orlov 2003; Orlov 2004]. Applying the convolu-

tion symmetry (1-6) to (1-13) gives an externally coupled two-matrix integral
(Proposition 4.4).

~(2) —~(2) -
Cp?ﬁ(zz\% )([A].[B]) = /Mleu-uNXN dp(M>) /MZGHNXN du(M>)

X1, (N, [A], [M)) (N, [ B], [Mp])e"M1M2) - (1.14)
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where [A4] and [ B] signify the sequences {ll tr(A")}l.eNJr and {% t1r(B")}l.eNJr of
trace invariants for the pair of Hermitian matrices A and B and

o (N [A], [M1]) = Y i (N)si ([ADsa (M), (1-15)
A

(N, [BL,[M2]) = Y A (N)si(BDsr(IMa2)). (1-16)
A

This doubly externally coupled two-matrix model 7-function can also be ex-
pressed in a finite N x N determinantal form (eq. (4-37), Proposition 4.5).

This approach can also be extended to more general 2D-Toda t-functions
admitting multiple integral representations of the form (4-47). Applying the
convolution symmetry (1-6) then gives a new 2D-Toda t-function expressible
either as a multiple integral (eq. (4-48), Proposition 4.6) or as a finite determinant
(eq. (4-50), Proposition 4.7).

The key to understanding these constructions, and further results following
from them, is the interpretation of the Sato r-function as a vacuum state expec-
tation value of products of exponentials of bilinear combinations of fermionic
creation and annihilation operators [Sato 1981; Jimbo and Miwa 1983; Ueno
and Takasaki 1984]. This well-known construction will be summarized in the
next section.

2. Fermionic construction of z-functions

We recall here the approach to the construction of t-functions for integrable
hierarchies of the KP and Toda types due to Sato [Sato 1981; Sato and Sato
1983], the Kyoto school [Date et al. 1981/82; 1983; Jimbo and Miwa 1983; Ueno
and Takasaki 1984] and Segal and Wilson [1985].

2.1. Hilbert space Grassmannian and fermionic Fock space.

We begin with the “first quantized” Hilbert space #, which will be identified, as
in [Segal and Wilson 1985], with the space of square integrable functions on the
unit circle

¥ =L>2S") =%, +%_, (2-1)

decomposed as the direct sum of the subspaces %4 = span{z’};en and H_ =
span{z~"};cn+ consisting of functions that admit holomorphic extensions, re-
spectively, to the interior and exterior of the unit circle S in the complex z-plane,
with the latter vanishing at z = co. For consistency with other conventions, the
monomial (orthonormal) basis elements {e; };cz of 9 will be denoted by

ei=z""1 ez (2-2)
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Two infinite abelian groups act on 3¢ by multiplication:
[yo={yy (1) = eXi=1 "'Zi} and T_:={y_(t):= eXi=1 ”'Z_i}, (2-3)

where t := (f1,1,,...) is an infinite sequence of (complex) flow parameters
corresponding to the one-parameter subgroups. More generally, we have the
general linear group GL(%) consisting of invertible endomorphisms connected
to the identity with well defined determinants. (See [Segal and Wilson 1985] for
more detailed definitions of this and what follows.)

We consider the Grassmannian Gry_ (#€) of subspaces W C ¥ that are com-
mensurable with 1 C ¥ (in the sense of Segal and Wilson, namely that
orthogonal projection w4 : W—3 4 to ¥4 is a Fredholm operator while pro-
jection w— : W—3_ to #_ is Hilbert—Schmidt). The connected components of
Gry, (9€), denoted Gr%ﬁ (), N € Z, consist of those W € Gry, (¥) for which
the Fredholm index of w4 : W—#_ is N. These are the GL(%) orbits of the
subspaces

g =N, c %, (2-4)

whose elements are denoted Wy = g(%f )e erzl (#). The solutions to the KP
hierarchy are given by the r-function 7,y ¢ (¢) as defined below, which determines
the orbit of W, n in Gr%ﬁ (%€) under I' ;- through its Pliicker coordinates. In the
terminology of Segal and Wilson, the index N is called the “virtual dimension”
of the elements Wy y € Gr%I (%0); i.e., their dimension relative to the those in
the component Gr%gr (#) containing .

The Fermionic Fock space is the exterior space & := A¥ consisting of (a
completion of) the span of the semiinfinite wedge products:

A, N):=e;, Nep Aeee (2-5)

where {/;};en+ is a strictly decreasing sequence of integers that saturates, for
sufficiently large j, to a descending sequence of consecutive integers. This
is equivalent to requiring that there be an associated pair (A, N) consisting of
an integer N and a partition A = (Aq,...,Ag@),0,0,...) of length £()) and
weight |A| = ng‘l) Ai, where the parts A; are a weakly decreasing sequence of
nonnegative integers that are positive for i < £(A), and zero for i > £(1), such
that the sequence {/; };en+ is given by

lj ::)\,j—j‘i‘N. (2-6)

In particular, for the trivial partition A = (0), we have the “charge N vacuum”
vector

|0, N) =en—1 Aeny—2 A+, 2-7
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which will henceforth be denoted |N). The full Fock space % thus admits a
decomposition as an orthogonal direct sum of the subspaces %y of states with
charge N

F = @ Fn. (2-8)

Nez

Denoting by {é'};c7 the basis for %¢* dual to the monomial basis {e; };cz for
d€, we define the Fermi creation and annihilation operators ¥; and w;r on an
arbitrary vector v € & by exterior and interior multiplication, respectively:

Yiv=eiAv, Yjvi=izv, veF. (2-9)

These satisfy the standard canonical anticommutation relations generating the
Clifford algebra on ¥ + #* with respect to the natural corresponding quadratic
form

Wi vl =l vl =0, iyl =6 (2-10)

The basis states |A, N) may be expressed in terms of creation and annihilation
operators acting upon the charge N vacuum vector as follows [Harnad and Orlov
2007]

k
V) = (~DZ= B T Ut Vg, IN)- (2-11)

i=1

where (a1, ...a|B1,...,Bk) is the Frobenius notation (see [Macdonald 1995])

for the partition A; i.e., o; is the number of boxes in the corresponding Young

diagram to the right of the i-th diagonal element and ; the number below it.
The Pliicker map % : Gry (#)—[P(F) takes the subspace

W = span(wq, wy,...) (2-12)
into the projectivization of the exterior product of its basis elements:
B :span(wy, wo,...) > [wy Awy A---], (2-13)

and may be lifted to a map from the bundle Fry_ () of frames on Gry (%)
to %:
P : Frye, (H)—F, (w1, wy,...) > wg Awy A (2-14)

These interlace the lift of the action of the abelian group I"y X #— 3¢ to Fry¢, (9¢)
or Grye, () with the following representation of I'- on & (and its projectiviza-
tion):

yr(@) v P, p(t) = eXi= iHi oy e, (2-15)
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where

Hi:=Y ¥}, i€Z i#0, (2-16)

nez

and t = (¢1,1,,...) is the infinite sequence of flow parameters. Similarly, the
Pliicker maps ﬁfj and P interlace the lift of the action of the abelian group
'~ x #—79€ to Fry, (¥) or Gry (%) with the following representation of I'_
on & (and its projectivization):

y_(t): v p_(t)v, p—(t):= eXiz1 iH-i e, (2-17)

Remark 2.1. Note that the image under the Pliicker map of the virtual dimension
N component Gry,n~ (%) of the Grassmannian Grye, (%) is the GL(9() orbit of
the charged vacuum state |V ), consisting of all decomposable elements of F .

The KP-Toda z-function 7g(N,t) corresponding to the element Wy y €
Grye, (9€) is given, within a nonzero multiplicative constant, by applying the
group elements y4 (¢) to Wy p, to obtain the I'y orbit

{We N (1) == y+()(Wg,N)J. (2-18)

and taking the linear coordinate (within projectivization) of the image under the
Pliicker map corresponding to projection along the basis element |N')

tg(N. 1) = (N|B(Wgn (1)) (2-19)

If the group element g € GL(%) is interpreted, relative to the monomial basis
{ei}icz, as an infinite matrix exponential g = e of an element of the Lie algebra
A € gl() with matrix elements A4;;, then the corresponding representation of
GL(%) on % is given by

e T
g — eZi,jeZAl]'llf“/fj" (2-20)

where : : denotes normal ordering (i.e., annihilation operators WJT appearing
to the right when j > 0 and creation operators ¥; to the right when i < 0).
This gives the following expression for 7x 4 (¢) as a charge N vacuum state
expectation value of a product of exponentiated bilinears in the Fermi creation
and annihilation operators

Tg(N.1) = (N|y+()ZIN). (2-21)

The equations of the KP hierarchy are then equivalent to the well-known infinite
system of Hirota bilinear equations [Jimbo and Miwa 1983; Sato 1981; Sato and
Sato 1983] which, in turn, are just the Pliicker relations for the decomposable
element P(W, N (1)) € P(Fp).
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Similarly, we may define a 2-Toda sequence of double KP r-functions associ-
ated to the group element g

tPD(N.1.1) = (NP+(0g7-(D)IN), (2-22)
where = (f1,1,,...) is a second infinite set of flow parameters. This may simi-
larly be shown to satisfy the Hirota bilinear relations of the 2D-Toda hierarchy.
2.2. Schur function expansions.

Evaluating the matrix elements of y4 (¢) and p—_(¢) between the states | V) and
|A, N) gives the Schur function

(Ny+@)[A,N) = (A, N|p-@)|N) = 5,.(2). (2-23)

(cf. [Sato 1981; Sato and Sato 1983; Harnad and Orlov 2003; 2006] which is
determined through the Jacobi-Trudy formula

s (t) = det(hy,—i1j(t)|i<i,j<en) (2-24)

in terms of the complete symmetric functions /;(¢), defined by

o0
eXi=1 7 =N ()2 (2-25)
i=0

Inserting a sum over a complete set of intermediate states in Equations (2-21),
(2-22), we obtain the single and double Schur function expansions

Te(N.1) =Y 7N (M)sr(0). (2-26)
A
tP(N.4.8) =" " By g j)sp(®)su(f). (2-27)
A M

Here the sum is over all partitions A and p and
mN,g () = (A, N[EIN) (2-28)

is the Pliicker coordinate of the image of the element g(%]_?_’ ) e Grgeny (%) under
the Pliicker map ‘B along the basis direction |A, N} in the charge N sector %y
of the Fock space. Similarly,

may be viewed as the |A, N') Pliicker coordinate of the image of the element
g(wy,N) € Gr%i (9¢), where

Wy, N = Span{e,, i+ N} € Gr%ﬁ (%). (2-30)
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In particular, choosing g to be the identity element 1, and using Wick’s
theorem (or equivalently, the Cauchy—Binet identity in semiinfinite form), we
obtain [Harnad and Orlov 2003]

tP(N.1.8) = (N|P+(Op-(DIN) = D si(O)sa(F) = eZi=1 105 231
A
where the last equality is the Cauchy-Littlewood identity (cf. [Macdonald 1995]).

3. Convolution symmetries

3.1. Convolution action on ¥ and Gry__ ().

Consider now an infinite sequence of complex numbers {7; };c7, and define

pii=eli, =Ll ez 3-1)
Pi—1
[e.°]
In the following, we will assume that the series > 7_; converges and that
i=1

lim |ri|=r =<1 (3-2)
1—>00

(although, for some purposes, the latter condition may be weakened). It follows
that the two series

o o0
p+(z)=> _piz' and p_(z)=) piz” (3-3)
i=0 i=1
are absolutely convergent in the interior and exterior of the unit circle |z| = 1,
respectively, defining analytic functions p4 (z) in these regions and that

R, := 1_[ p—i (-4

i=1

converges to a finite value. If the inequality (3-2) is strict, p+(z) extends to
the unit circle, defining a function in L2(S'). Henceforth, we denote the pair
(p+, p—) by p, where the latter can be viewed as a sum p_ + p4 in the sense of
distributional convolutions, as defined below.

If w e L2(S"') has the Fourier series decomposition

o0 o0
w(z) = Z wie; = Z wiz7 T = wi(z) + w_(2), (3-5)
i=—00 i=—00
where

w4(z) = Z w_j_17", w—(z) := Z wiz 1 (3-6)

i=0 i=1
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(note the different labelling conventions in (3-3) and (3-6)), we can define a
bounded linear map C, : L?(S!)—L?(S"') that has the effect of multiplying
each Fourier coefficient w; by the factor p;, and hence each basis element e;

by pi:
w .
Cow)(2)= Y piwiz N = Cp(w) 4 + Cp(w)-—. (3-7)
i=—00
This can be interpreted as taking a convolution product with the function (or
distribution)

p(z) = pt(2) + p-(2), (3-8)
where

pr)=z"p-(H =) piz (3-9)

i=0
p(z)=z"lpp =) piz 7N (3-10)

i=0

1

Cp(w)y(2):= lim — Py Qi (z/0)¢ " de, (3-11)

e—0t 27i Jig|=1—

Co(w)—(2) ;== lim L p-(Ow—(z/8)¢~" d¢ (3-12)
=0t 27 Jig|=1+4e
(with the contour integrals taken counterclockwise).

If p_(z) extends analytically to S!, eq. (3-11) is an ordinary convolution
product on the circle (in exponential variables). In the examples detailed below,
all but a finite number of the 7—; values vanish for i > 0, and hence the infinite
product (3-4) is really finite, but p_(z) is rational with a pole at z = 1 and
the convolution product (3-12) may be understood on S only in the sense of
distributions.

Remark 3.1. Note that the class of generalized convolution mappings defined
by (3-7)—(3-12) only forms a semigroup since, although they may be invertible,
their inverse does not generally belong to the same class. It may be extended
to a group by dropping the condition (3-2), or restricted to one by requiring
r =1, but this will not be needed in the sequel. The linear maps C, : #— 3¢ may
nevertheless be interpreted as elements of GL(), and are simply represented in
the monomial basis {e; } by the diagonal matrix diag{p;}. They thus belong to the
abelian subgroup of GL(¥) consisting of invertible elements that are diagonal
in the monomial basis.

Remark 3.2. Since the Baker—Akhiezer function (1-3), evaluated at all values of
the parameters ¢ = (t1, 2, . . . ), spans the shifted element zV (We N) € Gr%(jr (%)



258 J. HARNAD AND A. YU. ORLOV

in the zero virtual dimension component of the Grassmannian, the convolution
action (3-11), (3-12), lifted to the Grassmannian, may be obtained by applying
its conjugate zV o Cpo z~N under the shift map

N Grygo (%)~ Gryey (%) (3-13)

to Wy (z,t). But note that, at fixed values of the flow parameters #, this does not
equal the value of the Baker—Akhiezer function corresponding to the transformed
t-function as defined below; only the subspaces of 7 that they span, varying
over the t values, will coincide. This fact will not be used explicitly in the
following, but it underlies the geometrical meaning of generalized convolutions
as symmetries of KP-Toda and 2D-Toda hierarchies.

3.2. Convolution action on Fock space.

We now consider the action C x F—%F of the abelian subgroup of GL(%)
con51st1ng of diagonal elements in the monomial basis, and associate an element
C o € C to each sequence {pi}iez defined as above, such that the Pliicker map ‘B
intertwines the C » action with that of Cp, lifted to the bundle Fry, (%) of frames
over Gry, (%), and is equivariant with respect to group multiplication in C.
To do this, we first introduce the abelian algebra generated by the operators

e
iU, fi>o0,
pim = (VY TS (3-14)
—yly; ifi <o,
[Ki K;] =0, i jeZ (3-15)

For {p; = ei};c7 as above, define the operator
Cp = eli=—oo TiKi, (3-16)

Definition 3.1. For each pair (A, N), where N € Z, and A is a partition which,
expressed in Frobenius notation, is (ay --- g | B1 -+ Bk), let

k
RN =c,(V) ] rN_H,-:cr(N)(]‘[ "N—+) (3-17)

(i.j)er i=1 PN-Bi—1

N-1
]_[ Pi if N >0,
¢r(N):=1 1 if N =0, (3-18)

-1
[T o' ifN<oO.

i=N
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Here the inclusion (i, j) € A is understood to mean that the matrix location
(i, j) corresponds to a box within the Young diagram of the partition A; that
is, 1 <i <€(A), 1 < j < A;. The second equality in (3-17) follows from the
definition (3-1).

It follows that ép acts diagonally in the basis {|A, N)}, with eigenvalues
r(N).

Lemma 3.1. Colh, N)y = (N)|A, N). (3-18)

Proof. Since the Fock space basis element |A, V) is an infinite wedge product

k

k .

Ny =ep Aepy A= (D=1 B [T ywga, vl IN). (3-20)
i=1

lj;==Aj—j+N, jeNT, (3-21)
it follows from the definition (2-9) and the normal ordering in (3-14) that the
effect of the action of e7i&i on |A, N) is to introduce a multiplicative factor p;
if i > 0 and ¢; is present in the wedge product (3-20) or ,01._1 if i <0 and itis

absent, and otherwise no factor. Therefore

k
~ ~ k .
Colh. N) = Co(=) =P TT Uty ¥y, IN)
i=1
k
_ [172) pn—i (l—[ PN +a; )M )
H?i] P—i i=1 PN—B;i—1 ’

k
=0 TT 255 i)

j—1 PN=Bi—1
=r(N)A, N). (3-22)
O
Now let
W = span{w; (z) € L*(S")};en+ € Grae, (%) (3-23)

and view {w; };en+ as a frame for W.

Lemma 3.2. The Pliicker map ‘JA3 intertwines the convolution action (3-7) and
the C-action on F

PUCH(wi)ien+) = RpCo(Biwi}ient)s (3-24)

o
with multiplicative factor R, = [] p—i.
i=1
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Proof. Applying C,, to each element w; € L2(S!) defining the frame for W €
Gry, (9€) just multiplies its Fourier coefficients by the factors p; as in (3-7). It
follows that the basis element |A, N} is multiplied by the product of the factors
p1; corresponding to the terms el it contains, as in (3-18). Equation (3-24) then

follows from the definition of the Pliicker map ‘i? and linearity.

Example 3.1. Choose

OOZi
p+(z) =e" = T lz| <1
i=0
1 >
p—(2)=——=) ', |z|>1,
z—1
1=
SO
o /it ifi >1,
S ifi <0,
/i ifi>1
ri = e
1 ifi <0,
1 .
FA(N):T lfg()\,)EN,
(T i)
i=1
where
L(A) A

W= [Iv-i+/)

i=1j=1
is the extended Pochhammer symbol.

Example 3.2. Choose

(I-8z)@
and p_(z) again as in (3-26), so
@il ifi= 1,
t 1 ifi <0,

L (a—14i)¢/i ifi>1,
T 1 ifi <0,

pr@ = e =S @S < =,
i=0 )

N-1

m»)ﬂk+ﬂwNﬂka—1+Amx
i!

“M:( )

i—0

~

if £()) < N.

O

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)
(3-30)

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)
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3.3. Convolutions and Schur function expansions of t-functions.

We now consider the KP-Toda tau function
c,¢(N.1) = (N9 (1) C,2|N), (3-36)

obtained by replacing the group element g in (2-21) by C,g. Such a r-function,
obtained from 7 by applying a convolution symmetry will be denoted

tc,g = Cp(tg). (3-37)

Introducing a second pair (04, p—), defined as in (3-3), with the Fourier coeffi-
cients p; replaced by p;, we also consider the 2-Toda tau function

e, (N1, 75) = (N 94 (1) Cog Cop—(D)IN), (3-38)

obtained by replacing the group element g in (2-22) by C,gC, and denote this
transformed 2-Toda 7-function

@ _.;52 0 )
¢, = Ciop (T )- (3-39)

Inserting sums over complete sets of intermediate orthonormal basis states in
(3-36) and (3-38), and defining 7y (N) as in (3-17), with the factors p; replaced
by pi, we obtain the following form for the Schur function expansions (2-26),
(2-27).

Proposition 3.1. The effect of the convolution actions (3-37), (3-39) is to multiply
the coefficients in the Schur function expansions of tc, g (N, t) and rg))g Cﬁ(N 1)
by the diagonal factors ry (N ) and 7y (N ):

7c,g(N.1) =Y 1 (N)my,g(W)si (1), (3-40)
A

D (N D) = Y3 (V) By g (W sa (5 (P). (3-41)
A M

The Pliicker coordinates for the modified Grassmannian elements C, g(%]_;_] ) and
CogCs(wy, N) are thus

N,C,g(A) =1 (N)n g (), (3-42)
BNn,c,gc; (A ) =1 (N)BN,g (A, Wi (N). (3-43)

Proof. This follows immediately from the diagonal form (3-18) of the C action
in the orthonormal basis {|A, N')}, substituted into the expansions (2-26), (2-27),
using the definitions (2-28) and (2-29) of the Pliicker coordinates 7y,c,g(A)

and Bn,c,gc; (A, ). ]
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In particular, setting g = C5 = 1, in (3-41) we obtain

t (N4, 5) =Y i (N)sa(®)sa(F) =: 1 (N, 2, 7), (3-44)
A

where 7, (N, t,t) is defined by the second equality. Such T-functions have been
studied as generalizations of hypergeometric functions in [Orlov and Scherbin
2001; Orlov 2006]. (See also [Harnad and Orlov 2003; 2006], where the notation
differs slightly due to the presence of the normalization factor ¢, (/N) in the
definition (3-17) of ry (N).)

In the following, the infinite sequence of parameters t = (1, 5, . .. ) will often
be chosen as the trace invariants of some square matrix M. The sequence so
formed will be denoted

t:[M]:{lltr(Mi)H , [M],-::lltr(M"). (3-45)

ieNtT

If ¢ and £ in (3-44) are replaced by [A4] and [ B], respectively, where A and B are
a pair of diagonal matrices

A =diag(ay,...,an), B=diag(by,...,bn), (3-46)
with distinct eigenvalues, and
n n
A= [ @—-ap). AB):= [] bi—by) (3-47)
1<i<j 1<i<j

denote the Vandermonde determinants in the variables {«;} and {b;}, we obtain
a simple N x N determinantal expression for 7, (N, [A4],[B]) (cf. [Harnad and
Orlov 2006; Orlov 20041)).

Lemma 3.3. Choosing p—(z) as in (3-26) (i.e., p—j = 1 fori < 1), we have

(N, [A][B]) = Z v (N)sy ([A]Dsn ([B]) (3-48)
L(A)SN
det(p-l—(aibj)‘]si,js]\f
- A(4)A(B) (3-49)

Remark 3.3. Although various proofs of this result may be found elsewhere
(see [Harnad and Orlov 2006], for example), we provide a detailed version here,
based on the Cauchy—Binet identity in semiinfinite form, since it involves some
useful further relations. An equivalent way is to use the fermionic form of Wick’s
theorem, which is really just the Cauchy—Binet identity expressed in terms of
fermionic operators and matrix elements.
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Proof of Lemma 3.3. The Cauchy-Binet identity in semiinfinite form may be
expressed by considering two N -dimensional framed subspaces span{ F; }1<ij<n
and span{G;}1<;j<n of the complex Euclidean vector space £2(N) = span{e; };en,
identified with #, C # = L2(S'), by choosing the monomials {z’};en as
orthonormal basis. The vectors F; and G; are thus identified with elements
Fi(z), Gj(z) € #4 defined by

o o0
Fi(z):=)_ Fizl. Gi(z):=) Gjiz/. (3-50)
Jj=0 j=0

(Note that, to avoid needless use of negative indices, we are not using the same
labelling conventions here for the basis elements {e;} as in (2-2).) The complex
inner product ( , ) is defined by integration

(F,G):= L F(z)G(z—‘)E (3-51)
2mi zeS1 z

The Cauchy-Binet identity can then be expressed as

det(Fi, Gj)|1<i,j<n = Z det(Fy;—i+n,;) det(Gy,—i+n,j),  (3-52)

L(A)SN
where
F; = Z Fjiej, Gi= Z Gjiej, (3-53)
jez jez

and the sum is over all partitions A of length £(A) < N, completed so that the
N x N submatrices Fj,_;1n,j and G, _; 4 y,; are defined by setting A; = 0 for
i > £(A). Since all expressions in the sum will be polynomials in the parameters
(a;, b;) there is no loss of generality in assuming that these lie within the unit
disc. We define

Fi(2):= py(aiz), Gi(z):=(1—-biz)"", (3-54)

and hence
Fij = pi(aj), Gij = (bj)". (3-35)

From the character formula

Aj—j+N Aj—j+N

det(a;’ ) det(b;”’ )
. sy ([B]) = .

s ([A]) = TA)’ TB)’

(3-56)

it follows that the determinant factors on the right side of (3-52) are
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Ai—i+N
det(Fy,—i+n,j) = det(a; N prs—itN)
N
- (H ,Ox,-—i+N)Sx ADAQAD.  (57)
i=1
Ai—i+N
det(Gy,—i+n,j) = det(b;" ™ TN) = 53 (B A(B). (3-58)
From the definitions (3-17) and (3-18), it follows that

N
(H pki—i+N) =n.(N), (3-59)
i=1
so the right side of the Cauchy—Binet identity (3-52) is just the right side of
(3-48) multiplied by A([A])A([B]). On the other hand, from (3-51), the left side
of (3-52) is

1 iz)d
det(Fi, G;) = det( — ¢ Pr@2) A2\ oor@iby)),  (3-60)
2wi Jzest z—bj z
which is just the expression (3-49) multiplied by A([A])A([B]). O

Remark 3.4. Note that, for the case of Example 3.1, (3-49) becomes the key
identity (cf. [Harnad and Orlov 2006; Zinn-Justin 2002])

N—1 det(eaibf)|1<ij<N

1
= et =(TT#) =5 oo

LA)=N

which, together with the character integral [Macdonald 1995]
d,N f g (U)si [AUXUT)) = s ((ADsa (X)), (3-62)
UeU(N)

(where du g (U) is the Haar measure on U(N)), implies the Harish-Chandra—
Itzykson—Zuber (HCIZ) integral [Itzykson and Zuber 1980]

N—1

d U w(AUXUT) :( k') det(eaixj) ' 363
cwy 10 e sam @

Remark 3.5. The condition that the eigenvalues {a;} and {b;} of A and B be
distinct can be eliminated simply by taking limits in which some or all of these
are made to coincide. In the resulting determinantal formulae, like (3-49), and
those appearing in subsequent sections, in which a Vandermonde determinant
A(A) or A(B) appears in the denominator, the only modification is that the terms
in the numerator determinants depending on the a;’s and b;’s are replaced by
their derivatives with respect to these parameters, taken to the same degree as the
degeneracy of their values, while the denominator Vandermonde determinants
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are correspondingly replaced by their lower dimensional analogs. This will not
be further developed here, but will be considered elsewhere, in connection with
correlation kernels for externally coupled matrix models. All formulae below
in which no Vandermonde determinant factors A(A) or A(B) appear in the
denominator remain valid in the case of degenerate eigenvalues.

4. Applications to matrix models

We now consider N x N matrix Hermitian integrals that are t-functions, and
show how the application of convolution symmetries leads to new matrix models
of the externally coupled type. In the following, let diu(M), be a measure on
the space of N x N Hermitian matrices M € HY*V that is invariant under
conjugation by unitary matrices, and such that the reduced measure, projected to
the space of eigenvalues by integration over the group U(N), is a product of N
identical measures dio on R, times the Jacobian factor A2(X),

N
[ anxuh = [ ot a0 @)
UeU(N)

a=1
where X = diag(xy,...,xn).
4.1. Convolution symmetries, externally coupled Hermitian matrix models
and t-functions as finite determinants.

It is well known that Hermitian matrix integrals of the form

Zn () = / du(M) T E2 M 4-2)
MEIH]NXN
N ~ )
=11 / dpo(xa)e =i %6 A2 (X)) 4-3)
R
a=1

are KP-Toda t-functions [Kharchev et al. 1991]. The Schur function expansion is

ZN® = Y anau(Wn @), (4-4)
L(A)SN

where the coefficients 7, 4, (1) are expressible as determinants in terms of the
matrix of moments [Harnad and Orlov 2002; 2003; 2006]

N
v =] ( [ duo(xa))A%X)sA([X]) @-5)
a=1

= (=1)2NV=DNT det(ily, 4 n—i j—1)|1<i.j<N- (4-6)
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M :=/du0(x)xi+j. 4-7
R

Now consider the externally coupled matrix model integral (cf. [Brézin and
Hikami 1996; Wang 2009; Zinn-Justin 1998; 2002])

Zyeud) = [

M eHN >

N dp(M)e"AM) (4-8)

where A € HV*N s a fixed N x N Hermitian matrix. This can be obtained
by simply applying a convolution symmetry transformation of the type given in
Example 3.1 to the t-function defined by the matrix integral (4-3).

Proposition 4.1. Applying the convolution symmetry C © to the T-function Z n (t),
where py(z) and p—(z) are defined as in (3-25), (3-26), and choosing the KP
flow parameters as t = [A] gives, within a multiplicative constant, the externally
coupled matrix integral (4-8)

N-1

Co(ZN)(A]) = ( I1

i=1

-1
z'!) Znex(A). 4-9)

Proof. Substituting the expansion [Harnad and Orlov 2006]

d
M = Y e (4M) (4-10)
LM)=N (N
into (4-8), where
dy,N = s)(1n) (4-11)

is the dimension of the irreducible GL(/N) tensor representation of symmetry
type A, and expressing M in diagonalized form as

M=UXUT, (4-12)

where U € U(N) and X = diag(xy,...xnN), gives

ZNew(A) = ) /U

L(A)=N

N .
A @) [ [ duarapeX= i
eU(N) a=1 R

XAZ(X)CIIX—’NSX([AUXUT]). (4-13)

(N
Evaluating the character integral (3-62) and using (4-5), it follows that
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N .
Zneat) = Y T [ dtoteae™ 58200 s (4D (XD

L)<N a=1 (N

= Y v s(A)
(N

L(AM=<N
N-1
= > (TTt)nssa
LO)SN N i=1
N—1 _
= ( ] i!)Cp(ZN)\,=[A], (4-14)
i=1
where the third line follows from the expression (3-30) for 7} (N) in Example 3.1
and the last from Proposition 4.1, 3.1. O

More generally, given an arbitrary function p4(z), analytic on the interior of
S and choosing p_(z) as in (3-26), we may define a new externally coupled
matrix integral

Zup)i= [ DT (NAM). @)

wAM s replaced by

€eH
in which e

(N, [M]) == (N, [1n], [M]) = Z dy N (N)sp((M]).  (4-16)
L(AMSN

Then by the same calculation as above, it follows that Z, ,(A4) is again just the
t-function obtained by applying the convolution symmetry C, to Z, evaluated
at the parameter values ¢ = [A].

Proposition 4.2. Applying the convolution symmetry ép to Zn gives

Co(ZN)([A]D = Zn p(A). (4-17)

In particular, if we take (o4, p—) as in Example 3.2 above, we obtain (cf.
[Harnad and Orlov 2006])

ZN,,O(A) =
N-—1

(1—[ %)ﬁz\/w—l) /M ) di(M) det(1 —ZAM)™4" VT (4-18)
| eHN*N

i=0

showing that this also is a KP-Toda r-function evaluated at parameter values
t=[A].
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Returning to the general case, a finite determinantal formula for Zy ,(A4) is
given by the following.

Proposition 4.3.
(—~1)sNV=D Ny
Znp(A) = ACD) det(Gij(p, A))| 1<i j<N" (4-19)
where
Giy(p. )= [ diaol)x' pi(a) (4-20)
R

Proof. Applying the character integral identity (3-62) to (4-15) gives

Znp(d) :/ du(M) " n(Nsi(ADsi(M]) 421
Ment L=
1
= 2D / dpo(X)A(X) det(p+(a,-x])){lsl.’jsN (4-22)
_1)zNIV=1) p
_ =D NER det(Gij (p, )] <; < (4-23)

with Gjj(p, A) defined by (4-20). Here, the integration over the U(N) group
has been performed and Lemma 3.3 has been used in (4-22). Equation (4-23)
follows from (4-22) by applying the Andréief identity [Andréief 1886] in the
form

1<i,j=N
1=k,I=N

N
(T ot ) detr ) et
m=1

= N!det(/¢,-(x)1/f,-(x))‘1§ij§N, (4-24)

with
¢i(x) =xNT i(x) o= g (aj), (4-25)

since
A(X) = det(¢i(x;)). (4-26)
O

4.2. Externally coupled two-matrix models.

We now turn to the case of two-matrix models. For simplicity, we only consider
Itzykson—Zuber exponential coupling [1980], although the same double convolu-
tion transformations may be applied to all the couplings considered in [Harnad
and Orlov 2006]. Using the HCIZ identity (3-63) to evaluate the integrals over
the unitary groups U(N), we obtain
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20w = [ dn(My) dR(M) @27)
M eHNN MpeHN>*N S
« (721 (ti M +1; M)+ M M>)

N N
= l_[ k! 1_[ (/ dMo(Xa)/dﬁo(ya) eZ?il(tiXHtinxaya))
k=1 a=1""F R
= a=1
X A(X)A(Y),
where Y = diag(y1, ..., yn). This is known to be a 2D-Toda t-function [Adler

and van Moerbeke 1999; 2005; Harnad and Orlov 2002; 2003; 2006; Orlov and
Shiota 2005], with double Schur function expansion

ZQ.H) =33 Bnauaph. wsi@)su(), (4-28)
A M

where the coefficients By g4 (A, 1) are N x N determinants of submatrices
in terms of the matrix of bimoments

N N
BN,dp.ap(h, ) = k! ( dig(xq) dﬁo(ya)exaya)
i e fi( o]
X AX) AT )3 (X Dsu (XD

N
= (N [T k! det(@By,—in, uy—j+-N)1ij=n (4-29)
k=1
RBij = f dpo(xa) / dfio(ya)e™ex’y/. (4-30)
R R

Now, choosing a pair of elements (p, p), with both p_ and p_ as in (3-26),
we may define a family of externally coupled two-matrix models, by

20,5 Byi= [ duo dji(M)
o MIGHNXN M2€|]'UNXN

x 7y (N, [A], [M1]) (N, [B], [M])e"M1M2) | (4.31)

where A, B are hermitian N x N matrices. This class may be obtained as the

2D-Toda t-function resulting from applying the convolution symmetry C,, 5 to
2

Zy-

Proposition 4.4. Applying the convolution symmetry C 0.5 102 ](3) and evaluat-

ing at the parameter values t = [A], t = [B] gives the externally coupled matrix

integral (4-31)

EOZD)V(ALIBY) = Z), (4. B) 43
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Proof. Because of the U(N) x U(N) invariance of the measures du and d i in
(4-31) and all factors in the integrand, except for the coupling term e*(M1M2),
we may carry out the two U(N) integrations, using the HCIZ identity (3-63),
to obtain a reduced integral over the diagonal matrices X = diag(xy,...,xn),
Y =diag(yy,..., yn) of eigenvalues of M and M>:

(2
ZN,p,ﬁ(A’ B)

N N
= [1#]1 ( /R dpuo(xa) /R dfio(va) e%)A(X)A(Y) (4-33)
e x ¢, (N[ [XDre; (V. [B. [Y])

= > > nMW)Bnauaa(h. WA N)s,(A)su(B) (4-34)

L(A)SN L(W)<N
_ Q252
= CA(zP)(41.18)). (4-35)

where the second equality follows from (3-44) and the last from Proposition 3.1,
(3-41). O

Since the dependence on 4 and B is U(N) x U(NN) conjugation invariant we
may choose, without loss of generality, 4 and B to be diagonal matrices

A = diag(ay,...,ay), B =diag(by,...,bn). (4-36)

We then obtain, as in the one-matrix case, a finite determinantal formula for the
2D-Toda t-function Z‘? ~(A4, B).
N,p,p

Proposition 4.5.
N
N ( 1 &!
(2 _ k=1 (0.5 .
Zn i A B) = oo a iy G (0 p A B) g ey (43D)
where

Goy(p. 5.4 B) = [ o) [ dia(r)e™ pitampeidyy).  (438)
Proof.
20, 4.8 = [ o) [ AR MM (4.30)
2050 M]GD-I]NXN MZGD-I]NXN

< 3 NS ADSLD Y FuN)su(BDsu (M)

LA)=N L(W)SN
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N
(i
= 0 ZiN=1Xiyi _
~ A(A)A(B) /d“(X)/d“(Y)e (4-40)
x det(p4- (@ X)) |y < <y 9D+ Bmyn) |y <cpppey  @4D
N
N(TT!
— k=1 7 (5 ]
= ZAAE) det(Gij (o, p, A, B)| | <; ;< (4-42)

In (4-41), we have used the HCIZ identity (3-63), antisymmetry of the determi-
nants in the integrand with respect to permutations in the integration variables
(x1,...,xn)and (y1,..., yn) and Lemma 3.3 twice, while in (4-42), we have
used the Andréief identity [1886] in the form

N
( T [ dun ym>) det(g (7)) det( )| 1o x (4-43)
m=1 1=<k,/=N
=N!det(/ du(x,y)@(xm(y))‘IS”SN- O

As the simplest example of a 2D-Toda t-function obtained through Proposi-
tions 4.4 and 4.5, consider the case when the measures dpo(x) and dug(y) are
both Gaussian, and p4 and p4+ are both taken as the exponential function.

Example 4.1.
dpo(x) =™ dx, dpo(y) =e " dy, pr(x)=e*, () =e.
(4-44)
Evaluating the Gaussian integrals gives
2 o(a? +b?) —aib;
Gij= e exp—t—— = (4-45)

V1+402 402 —1

and hence

VNI K o X,
2N ) = TN A (4)AB) exlD(4a2 1 l;(a" i ))

oaibj

><det(exp1 2 2). (4-46)
o

The exponential factor on the first line of (4-46) is a linear exponential in terms
of the 2KP flow variable 7, and 7, and hence, through the Sato formula (1-3),
produces just a gauge factor multiplying the Baker—Akhiezer function [Segal
and Wilson 1985]. Therefore (4-46) is just a rescaled, gauge transformed version
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of the 2KP t-function of hypergeometric type appearing in the integrand of the
Itzykson—Zuber coupled two-matrix model [Itzykson and Zuber 1980].

4.3. More general 2D-Toda t-functions as multiple integrals.

We may extend the above results to more general 2KP-Toda 7-functions expressed
as multiple integrals and finite determinants. To begin with, the following multiple
integral

N . ~ .
D) =TT [ | dilra. ya)eZi=1@xativd | A AY), (4-47)
* rJr

a=1

where T, T are curves in the complex x- and y-planes and du(x, y) is a measure
onI' x f, is a 2D-Toda t-function [Harnad and Orlov 2006] for a large class of
measures dio(x, y). Applying a double convolution symmetry C 0,5 With p_
and p_ the same as in (3-26), gives a new 2D-Toda r-function, also having a
multiple integral representation.

Proposition 4.6.
CAED)N.1.1)
N
= d as Va A A , . . ’~’ ‘ )
aljl(/r/’f* Hl¥a. )) (X)AY )T (N £, [XD (N7, [Y]). (4-48)

Proof. This is proved similarly to Proposition 4.4, using the Cauchy-Littlewood
identity (2-31) twice in the form

N [ 1.7 4,0 ~
[Ter=tativn = N 5On.0X) Y. su@su(¥).  (@-49)
a=1 L(M=N tw=N

O

Evaluating at parameter values ¢t = [A] and f = [B] and applying Lemma 3.3
again gives the t-function of (4-48) in N x N determinantal form.

Proposition 4.7.

~(2),_(2) =———
o Ta ) (ALBD = T80,

det(Gij(p. . A. B) |\ oy j<y»  (4-50)

where

Gij(p. 5. A, B) := /F [fdu(x,y>p+<ajx)ﬁ+(b,-y>. 4-s1)
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Proof.
~(2),_(2) ! 5
ERaDE = 5px T ([ fancsarn)
X Qet(p (@11 <ty U+ B3|y ey

— TN det(Gij (p, p, A. B))|1§l.’j§ N (4-52)

where again we have used the Lemma 3.3 twice and the Andréief identity in the
form (4-43). O

This therefore provides a new class of 2D-Toda t-functions expressible in
such a finite determinantal form, associated to any pair of curves I', T, together
with a measure du on their product, and a pair of functions p4(x) and p+(p),
such that the integrals in (4-51) are well defined and convergent.
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