# A ruler regularity in hexadecimal games

J.P. GROSSMAN AND RICHARD J. NOWAKOWSKI

An important problem in the theory of impartial games is to determine the regularities of their nim-sequences. Subtraction games have periodic nim-sequences and those of octal games are conjectured to be periodic, but the possible regularities of the nim-sequence of a hexadecimal game are unknown. Periodic and arithmetic periodic nim-sequences have been discovered but other patterns also exist. We present an infinite set of hexadecimal games, based on the game **0.2048**, that exhibit a regularity — ruler regularity — not yet reported or codified.

### 1. Introduction

A taking-and-breaking game [Albert et al. 2007; Berlekamp et al. 2001] is an impartial combinatorial game, played with heaps of beans on a table. A move for either player consists of choosing a heap, removing a certain number of beans from the heap, and then possibly splitting the remainder into several heaps; the winner is the player making the last move. For example, both Grundy's Game (choose a heap and split it into two unequal heaps) and Couples-Are-Forever (choose a heap with at least three beans and split it into two) are taking-and-breaking games with very simple rules, however neither has been solved.

We present an overview of the required theory of *impartial* games. The reader can consult the references above for a more in-depth grounding in the theory of, and for more details about, subtraction and octal games.

The *followers* of a game are all those positions which can be reached in one move. The *minimum excluded value* of a set S is the least nonnegative integer which is not included in S and is denoted mex(S). The nim-value of an impartial game G, denoted by  $\mathcal{G}(G)$ , is given by  $\mathcal{G}(G) = mex\{\mathcal{G}(H)|H$  is a follower of  $G\}$ . The values in the set  $\{\mathcal{G}(H)|H$  is a follower of  $G\}$  are called *excluded values* for  $\mathcal{G}(G)$ . An impartial game G is a previous player win (i.e., the next player has no good move) if and only if  $\mathcal{G}(G) = 0$ . The *exclusive or* (XOR), or *nim-sum*, of two nonnegative integers a, b, written  $a \oplus b$ , consists of adding their binary

Partially supported by grants from NSERC.

Keywords: hexadecimal game, ruler regular, nim-sequence, periods.

representations with no carrying; for example,  $3 \oplus 6 = (11 \oplus 110)_{\text{base }2} = 101_{\text{base }2} = 5$ . The *disjunctive sum* of games G and H, written G + H, is the game where a player chooses either of the two and plays in that game; the nim-value of a disjunctive sum satisfies  $\mathcal{G}(G + H) = \mathcal{G}(G) \oplus \mathcal{G}(H)$ . Taking-and-breaking games are examples of disjunctive games — choose one heap and play in it. To know how to play these game well, it suffices to know what the nim-values are for individual heaps. For a given game G, let  $\mathcal{G}(i)$  be the nim-value of G played with a heap of size i. We define the nim-sequence for a taking-and-breaking game to be the sequence  $\mathcal{G}(0)$ ,  $\mathcal{G}(1)$ ,  $\mathcal{G}(2)$ , . . . . A nim sequence is *periodic* if there exist N and p such that  $\mathcal{G}(n+p) = \mathcal{G}(n)$  for all  $n \geq N$ . It is arithmetic-periodic if there exist N, p and s such that  $\mathcal{G}(n+p) = \mathcal{G}(n) + s$  for all  $n \geq N$ , where s is called the *saltus*.

In a hexadecimal game, after removing beans from a heap the remainder can be split into at most three heaps. The rules for a hexadecimal game are described by a hexadecimal code  $0.d_1d_2...d_u$  where  $0 \le d_i \le 15$ . This is an extension of the octal code used in [Berlekamp et al. 2001]. We use the letters A, B, C, D, E, F for the numbers 10 through 15 respectively. If  $d_i = 0$  then a player cannot take i beans away from a heap. If  $d_i = a_3 2^3 + a_2 2^2 + a_1 2^1 + a_0 2^0$  where  $a_i$  is 0 or 1, a player can remove i beans from the heap provided he leaves the remainder in exactly j heaps for some j with  $a_j = 1$ . If  $0 \le d_i \le 7$  for all i then this is called an *octal* game. This restriction allows a heap to be split into no more than 2 heaps. A subtraction game has  $d_i = 0$  or 3; that is, a player can remove beans but cannot split the heap.

The nim-sequence of a subtraction game with a finite subtraction set is periodic [Albert et al. 2007; Berlekamp et al. 2001]. In [Althöfer and Bültermann 1995], it is shown that the sequence of nim-values of games with small subtraction sets can have long periods. It is conjectured that all octal games also have periodic nim-sequence in unsolved problem 2 of [Guy and Nowakowski 2002]. This appears to be hard. For example, in the game **0.106** Flammenkamp computed the period length as 328226140474 and preperiod length as 465384263797. See [Flammenkamp 2012] for this and other searches for long periods, also see [Berlekamp et al. 2001; Caines et al. 1999; Gangolli and Plambeck 1989]. It is interesting to note that while octal games cannot have arithmetic-periodic nim-sequences [Austin 1976], if a single pass move is allowed then not only do arithmetic-period nim-sequences occur, but also nim-sequences composed of a periodic subsequence and an arithmetic-periodic subsequence occur called *sapp* sequences [Horrocks and Nowakowski 2003].

For hexadecimal games, there is an even richer selection of behaviours [Howse and Nowakowski 2004]):

• Periodic: **0.B**, period 2 with no preperiod.

- Arithmetic-periodic: **0.137F** has nim-sequence  $0, 1, 1, 2, 2, 3, 3, \ldots$ , where  $\mathcal{G}(2m-1) = \mathcal{G}(2m) = m$  and  $\mathcal{G}(2m+1) = \mathcal{G}(2m) + 1 = m+1$  for  $m \ge 1$ . In this case, the saltus is 1 and the period length is 2.
- Sapp regularity: 0.205200C has the nim-sequence consisting of
  - (a) periodic subsequences  $\mathcal{G}(40k+19) = 6$  and  $\mathcal{G}(40k+39) = 14$ , and
  - (b) arithmetic-periodic subsequences

$$\mathcal{G}(40k+j) = \mathcal{G}(40(k-1)+j)+16, \quad j \neq 19, 39, k > 0,$$

with preperiod length of 4, period length of 40.

• In [Howse and Nowakowski 2004], it is noted that **0.123456789** exhibits another type of regularity. Starting with n = 0, the first fifteen nim-values are 0, 1, 0, 2, 2, 1, 1, 3, 2, 4, 4, 5, 5, 6, 4, and thereafter

$$\mathcal{G}(2m-1) = \mathcal{G}(2m) = m-1,$$

except  $\mathcal{G}(2^k + 6) = 2^k - 1$ . The nim-sequence is essentially arithmetic-periodic, but with an infinite number of exceptional values that occur in a geometric fashion.

In this paper, we report another new regularity: *ruler-regularity*. This concept is taken from the markings of a foot ruler. (See [Berlekamp et al. 2003, page 470, Figure 7], "*The G-values for the* RULER *game*", except for us the ruler needs to be rotated by 45 degrees and then flipped!)

**Definition 1.** A sequence is *ruler regular* if there are positive integers N, p, s, r and a finite set of integers K such that  $\mathfrak{G}(n+p) = \mathfrak{G}(n) + s$  for all  $n \ge N$  except

$$n = r((q+1)2^{m+1} + 2^m + 1) + k, \quad k \in K, q, m \ge 0,$$

when

$$\mathcal{G}(r((q+1)2^{m+1}+2^m+1)+k) = \mathcal{G}(r(q2^{m+1}+2^m+1)+k)+2^{m+3}.$$

This is illustrated in Figure 1 for **0.2048**, where r = 13. New "lines" start at  $(m, q) = (1, 0), (2, 0), \ldots$ , and are indicated in the top graph. A ruler-regular nim-sequence appears arithmetic-periodic regardless of how far we extend the sequence, but before the sequence goes far enough to ensure arithmetic-periodicity (approximately  $3e + 8ps^3$ , where e is the size of the largest heap which is not in the period; see [Howse and Nowakowski 2004, Theorem 4]), a new term arises which essentially doubles the length of the apparent period. In this paper we show that **0.20...048**, where there are an odd number of 0s in the hexadecimal code, are ruler-regular. These are not the only such games, for instance **0.21317809532**, **0.31711188** (Figure 2, top), **0.321432132900903213**,



**Figure 1.** The first 350 values (top) and the first 4000 (bottom) of the  $\mathscr{G}$ -sequence of **0.2048**.

and **0.404008** (Figure 2, bottom) all appear to be ruler-regular with |K|=1. (Actually, **0.404008** isn't precisely ruler-regular; the sharp-eyed reader will have noticed the same behaviour as in **0.123456789** happening along the first diagonal underneath the main diagonal, in tandem with the point starting the new "line".) The game **0.9138B835B** has |K|=3; see Figure 3.

All of the previously known regularities — periodic, arithmetic-periodic and sapp — have the property that only a finite number of nim-values have to be



Figure 2. Top: 0.31711188. Bottom: 0.404008.

calculated to identify the type of regularity. However, as yet we have no similar mechanism to check for ruler-regularity.

# 2. The hexadecimal game 0.2048

In the hexadecimal game **0.2048**, the legal moves are to:

• subtract 1 from a heap of size  $\geq 2$ ;



Figure 3. 0.9138B835B.

- subtract 3 from a heap and split the remainder into exactly two heaps;
- subtract 4 from a heap and split the remainder into exactly three heaps.

Here are the first 21 nim-values for this game; they can be computed fairly easily by hand.

| n                | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| $\mathcal{G}(n)$ | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 2  | 3  | 2  | 3  | 4  | 5  | 4  | 5  | 3  | 4  | 5  |

# **Theorem 2.** For the game **0.2048**:

(a) If  $k \ge 0$  and  $j \in \{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 18\}$ , then  $\mathfrak{G}(13k + j) = 4k + \mathfrak{G}(j)$  unless j = 2 and k is of the form

$$(q+1)2^{m+1} + 2^m + 1, \quad (q, m \ge 0).$$

(b) For 
$$q, m \ge 0$$
,  $\mathcal{G}(13((q+1)2^{m+1}+2^m+1)+2) = 2^{m+3}q + 2^{m+2} + 2$ .

Part (b) of the theorem describes the exceptional values which form the ruler pattern. Equivalently stated, if

$$k = (q+1)2^{m+1} + 2^m + 1$$

then

$$\mathcal{G}(13k+2) = 4(k-2^{m+1}-1)+2.$$

| m | q = 0      | q = 1      | q = 2       | q = 3       | q = 4       | Differences           |
|---|------------|------------|-------------|-------------|-------------|-----------------------|
| 0 | (54,6)     | (80,14)    | (106,22)    | (132,30)    | (158,38)    | (13.2,8)              |
| 1 | (93,10)    | (145,26)   | (197,42)    | (249,58)    | (301,74)    | (13.4,16)             |
| 2 | (171,18)   | (275,50)   | (379,82)    | (483,114)   | (587,146)   | (13.8,32)             |
| 3 | (327,34)   | (535,98)   | (743,162)   | (951,226)   | (1159,290)  | (13.16,64)            |
| 4 | (639,66)   | (1055,194) | (1471,322)  | (1887,450)  | (2303,578)  | (13.32,128)           |
| 5 | (1263,130) | (2095,386) | (2927,642)  | (3759,898)  | (4591,1154) | (13.64,256)           |
| 6 | (2511,258) | (4175,770) | (5839,1282) | (7503,1794) | (9167,2306) | $(13 \cdot 128, 512)$ |

**Table 1.** The "lines" m = 0, 1, ..., 6.

These exception values form lines, each of slope  $\frac{4}{13}$ , indexed by  $m \ge 0$  starting at  $(39 \times 2^m + 15, 2^{m+2} + 2)$ , and the other points on the "line" are given by  $(39 \times 2^m + 15, 2^{m+2} + 2) + 13(2^{m+1}, 2^{m+3})$ . This is illustrated in Table 1. The annotations "m =" in Figure 1 indicate the start of the m-th line. In the top half of the figure, the four points m = 4, q = 0 through m = 1, q = 7 lie on a "rule" of negative slope. For a given  $k \ge 0$ , starting with the point in the bottom right position of this line, the coordinates of the k-th new rule are given by Theorem 2(b) with

$$(m,q) = (k,0), (k-1,1), (k-2,3), \dots, (k-i,2^i-1), \dots, (0,2^k-1).$$

The difference between consecutive points is  $(-13 \cdot 2^{m-1}, 2^{m+1})$  which gives a slope of  $-\frac{4}{13}$ . The other set of interesting points are the ones given by (m, 0),  $m = 1, 2, \ldots$  These also fall on a line and this has slope  $\frac{4}{3 \cdot 13}$ .

Before we embark on the proof of Theorem 2, let us take a moment to discuss the statement of the theorem and make a few simple observations that will be of use later on. First, the set  $J = \{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 18\}$  is a modified set of remainders (mod 13) chosen so that for  $j \in J$  we have  $0 \le \mathcal{G}(j) \le 3$ . These are the values of  $\mathcal{G}(j)$  for  $j \in J$ :

| j                 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 18 |
|-------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|
| $\mathfrak{G}(j)$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2  | 3  | 2  | 3  | 3  |

Our proof of Theorem 2 is by induction, where we divide into cases based on j, the residue modulo 13. For each  $j \in J$ , we must show that  $\mathcal{G}(13k+j)$  is as described by the theorem. In order to show that  $\mathcal{G}(n) = g$ , it is necessary to (i) prove that for all g' < g there is a move from a heap of size n to a position with nim-value g', and (ii) prove that there is no move from a heap of size n to a position with nim-value g. Note that (a) holds trivially with k = 0, so in all that follows, let k > 0 and  $j \in J$ , and suppose inductively that the statement of Theorem 2 holds for heaps smaller than 13k + j. We begin with a lemma:

**Lemma 3.** For all  $1 \le a \le k$  there is a move from a heap of size 13k + j to a position with nim-value 4(k-a) + 2 unless  $k = (q+1)2^{m+1} + 2^m + 1$ , j = 2 and  $a = 2^{m+1} + 1$ , in which case there is no move from a heap of size 13k + j to a position with nim-value 4(k-a) + 2.

*Proof.* We first consider the nonexceptional cases where  $j \neq 2$  or  $a \neq 2^{m+1} + 1$  or  $k \neq (q+1)2^{m+1} + 2^m + 1$ , and show that there is a move from a heap of size 13k + j to a position with nim-value 4(k-a) + 2. We can subtract 4 and split the remainder into three heaps of size r, r and 13k + j - 4 - 2r. The nim-value of this position is simply  $\mathcal{G}(13k + j - 4 - 2r)$ , so it certainly suffices to find  $r \geq 1$  such that  $\mathcal{G}(13k + j - 4 - 2r) = 4(k - a) + 2$ . In other words, it suffices to find  $n \leq 13k + j - 6$  such that  $13k + j - n \equiv 0 \pmod{2}$  and  $\mathcal{G}(n) = 4(k - a) + 2$ . For a = k, either n = 5 or n = 10 will satisfy these conditions unless 13k + j = 14, but for this case we simply subtract 3 and divide into heaps of 10 and 1. For a < k we consider two cases:

Case 1:  $j + a \equiv 0 \pmod{2}$ . Take n = 13(k - a) + 10. Then by induction,  $\mathfrak{G}(n) = 4(k - a) + 2$ , and also  $13k + j - n \equiv j + a \equiv 0 \pmod{2}$ , so we are done if  $13(k - a) + 10 \leq 13k + j - 6$ , which is equivalent to  $16 \leq 13a + j$ . This is certainly the case if a > 1, so we need only to consider a = 1 in which case the inequality becomes  $j \geq 3$ . This in turn is true unless j = 1 or j = 2, but  $j \neq 2$  because we are considering the case  $j + a \equiv 0 \pmod{2}$ . Thus, it remains to show that there is a move from a heap of size 13k + 1 to a position with nim-value 4(k - 1) + 2. We can accomplish this by subtracting 3 and splitting the remainder into two heaps of size 1 and 13k - 3; by induction  $\mathfrak{G}(1) \oplus \mathfrak{G}(13k - 3) = 0 \oplus \mathfrak{G}(13(k - 1) + 10) = 4(k - 1) + 2$ .

Case 2:  $j + a \equiv 1 \pmod 2$ . Let m be the number of trailing zeros in the binary representation of k - a. Theorem 2(b) states that 4(k - a) + 2 appears as an exceptional value  $\mathcal{G}(n)$  for  $n = 13(k - a + 2^{m+1} + 1) + 2$ . If either  $a > 2^{m+1} + 1$  or  $a = 2^{m+1} + 1$  and j > 2 then  $n = 13(k - a + 2^{m+1} + 1) + 2 < 13k + j$ , so by induction we can assume that  $\mathcal{G}(n) = 4(k - a) + 2$ . Then there is some q such that  $4(k - a) + 2 = 2^{m+3}q + 2^{m+2} + 2$ , and so  $13k + j - n \equiv j + a - 1 \equiv 0 \pmod{2}$ , so we're done if  $n \le 13k + j - 6$ , that is,  $8 \le 13(a - 2^{m+1} - 1) + j$ . This in turn is true if either  $a > 2^{m+1} + 1$  or  $a = 2^{m+1} + 1$  and  $j \ge 8$ ; note that these conditions on (a, j) subsume the previous ones. Thus, we may assume from this point forward that  $a \le 2^{m+1} + 1$  and either  $a < 2^{m+1} + 1$  or j < 8. In particular, for  $j \ge 8$  we may assume that  $a < 2^{m+1} + 1$ . Note that by definition of m, if  $d < 2^m$  then the 1s in the binary representations of k - a and d do not overlap, so  $d \oplus (k - a) = d + (k - a)$ , which we rewrite as

$$k - a = d \oplus (k - a + d). \tag{1}$$

We proceed by considering three cases.

Case 2.1:  $a \equiv 0 \pmod{2}$ ,  $j \equiv 1 \pmod{2}$ . Since  $a \ge 1$  we in fact have  $a \ge 2$ . Let d = (a-2)/2. Then  $d \le (2^{m+1}-1)/2 < 2^m$  and (1) becomes

$$k - a = d \oplus (k - 2 - d). \tag{2}$$

Our strategy is now to subtract 4 and split the remaining 13k + j - 4 into exactly three heaps of sizes  $13(k-2-d)+j_1$ ,  $13d+j_2$  and  $j_3$  where  $j_1+j_2+j_3=22+j$ ,  $\mathcal{G}(j_1) \oplus \mathcal{G}(j_2) \oplus \mathcal{G}(j_3) = 2$ ,  $j_3 \in J \cup \{5\}$  and  $j_1, j_2 \in J$ . Using induction, (2) and the fact that  $0 \leq \mathcal{G}(j_i) \leq 3$ , the nim-value of this position is

$$(4(k-2-d) + \mathcal{G}(j_1)) \oplus (4d + \mathcal{G}(j_2)) \oplus \mathcal{G}(j_3)$$
  
=  $4(d \oplus (k-2-d)) + \mathcal{G}(j_1) \oplus \mathcal{G}(j_2) \oplus \mathcal{G}(j_3) = 4(k-a) + 2.$ 

Since  $j \equiv 1 \pmod{2}$ , we only need to consider  $j \in \{1, 3, 7, 9, 11, 13\}$ . We can verify that the  $j_i$  in the following table satisfy the given conditions for each choice of j:

| 22 + j | 23 | 25 | 29 | 31 | 33 | 35 |
|--------|----|----|----|----|----|----|
| $j_1$  | 9  | 10 | 12 | 13 | 7  | 8  |
| $j_2$  | 9  | 10 | 12 | 13 | 8  | 9  |
| $j_3$  | 5  | 5  | 5  | 5  | 18 | 18 |

Case 2.2a:  $a \equiv 1 \pmod{2}$ ,  $j \equiv 0 \pmod{2}$ ,  $a < 2^{m+1} + 1$ ,  $j \ge 8$  or j = 2. Let  $d = (a-1)/2 < 2^{m+1}/2 = 2^m$ . Then (1) becomes

$$k - a = d \oplus (k - 1 - d). \tag{3}$$

The conditions on j imply that  $j \in \{2, 8, 10, 12, 18\}$  and hence

$$(j+4)/2 \in \{3, 6, 7, 8, 11\} \subset J$$
.

We can therefore subtract 4 and split the remaining 13k + j - 4 into three heaps of size 13(k - 1 - d) + (j + 4)/2, 13d + (j + 4)/2 and 5. Using induction and (3), we again find that the nim-value of this position is 4(k - a) + 2.

Case 2.2b:  $a \equiv 1 \pmod{2}$ ,  $a \le 2^{m+1} + 1$ , j = 4, 6. We dispense with the case a = 1 by observing that we can subtract 4 from 13k + 4 and split the remaining 13k into heaps of size 5, 4 and 13(k-1) + 4; we can subtract 3 from 13k + 6 and split the remaining 13k + 3 into heaps of size 6 and 13(k-1) + 10. By induction, the nim-value of each resulting position is 4(k-1) + 2. Now assume that  $a \ge 3$ , and let  $d = (a-3)/2 \le (2^{m+1} - 2)/2 < 2^m$ . Then (1) becomes

$$k - a = d \oplus (k - 3 - d). \tag{4}$$

Our strategy is to again subtract 4 and split the remaining 13k + j - 4 into exactly three heaps of size  $13(k-3-d)+j_1$ ,  $13d+j_2$  and  $j_3$  where  $j_1+j_2+j_3=35+j$ ,  $\mathcal{G}(j_1) \oplus \mathcal{G}(j_2) \oplus \mathcal{G}(j_3) = 2$ ,  $j_3 \in J \cup \{5\}$  and  $j_1, j_2 \in J$ . Using induction, (4) and the fact that  $0 \leq \mathcal{G}(j_i) \leq 3$ , we again find that the nim-value of this position is 4(k-a)+2. We can verify that for j=4 we can take  $(j_1, j_2, j_3)=(10, 11, 18)$  and for j=6 we can take  $(j_1, j_2, j_3)=(11, 12, 18)$ .

The only remaining values of j and a to consider are j=2 and  $a=2^{m+1}+1$ ; in all other cases we have shown that there is a move from a heap of size 13k+j to a position with nim-value 4(k-a)+2. Recall that m is the number of trailing zeros in the binary representation of k-a, thus k-a is of the form  $q \cdot 2^{m+1} + 2^m$  for some  $q \ge 0$ , that is  $k = (k-a) + a = (q+1) \cdot 2^{m+1} + 2^m + 1$ . This is exactly the case excepted by the statement of the lemma, so all that remains to be shown is that in this case there is no move from a heap of size 13k+j to a position with nim-value 4(k-a)+2. First, observe that subtracting 1 leaves a heap which by induction has nim-value 4k. Next, suppose we subtract 4 and divide the remaining 13k-2 into exactly 3 heaps. We can express the size of these heaps as  $13k_1+j_1$ ,  $13k_2+j_2$ , and  $13k_3+j_3$ , where for i=1,2,3 either  $j_i \in J$  or  $j_i=5$  and  $k_i=0$ . By induction, the nim-value of the resulting position is:

$$(4k_1 + \mathcal{G}(j_1)) \oplus (4k_2 + \mathcal{G}(j_2)) \oplus (4k_3 + \mathcal{G}(j_3))$$
  
=  $4(k_1 \oplus k_2 \oplus k_3) + \mathcal{G}(j_1) \oplus \mathcal{G}(j_2) \oplus \mathcal{G}(j_3).$ 

If this is equal to 4(k-a) + 2 then the following three equations must hold:

$$(13k_1 + j_1) + (13k_2 + j_2) + (13k_3 + j_3) = 13k - 2,$$
(5)

$$k_1 \oplus k_2 \oplus k_3 = k - a, \tag{6}$$

$$\mathcal{G}(j_1) \oplus \mathcal{G}(j_2) \oplus \mathcal{G}(j_3) = 2. \tag{7}$$

From (5) we have  $j_1+j_2+j_3\equiv -2\pmod{13}$ . On the other hand, since  $j_i\leq 18$  we have  $j_1+j_2+j_3\leq 54$ , thus  $j_1+j_2+j_3\in \{11,24,37,50\}$ . There are no choices of  $j_1,j_2,j_3\in J$  which sum to 50. If  $j_1+j_2+j_3=37$  then they can't all be  $\leq 13$ , so one of them is 18 and the other two sum to 19, but we can verify by hand that for all such choices we have  $\mathcal{G}(j_1)\oplus\mathcal{G}(j_2)\oplus\mathcal{G}(j_3)=0$ . If  $j_1+j_2+j_3=24$  then from (5)  $k_1+k_2+k_3=k-2$ . But  $a=2^{m+1}+1$  is odd and  $k_1\oplus k_2\oplus k_3=k-a$ , so in this case  $k_1+k_2+k_3$  and  $k_1\oplus k_2\oplus k_3$  would have opposite parity which is impossible. Finally, if  $j_1+j_2+j_3=11$  then each  $j_i\leq 9$ , so in order to satisfy (7) one of them must be 5, say  $j_3$ , hence  $k_3=0$ . We are then left with two equations:

$$k_1 + k_2 = k - 1, (8)$$

$$k_1 \oplus k_2 = k - a. \tag{9}$$

Now  $k_1 + k_2 = k_1 \oplus k_2 + 2(k_1 \& k_2)$ , where & denotes bitwise Boolean AND. Equations (8) and (9) therefore give us  $2(k_1 \& k_2) = k_1 + k_2 - k_1 \oplus k_2 = a - 1 = 2^{m+1}$  which implies that  $k_1 \& k_2 = 2^m$  and so  $k_1$  and  $k_2$  both have a 1 in the  $2^m$  place of their binary representations. But  $k_1 \oplus k_2 = k - a = q \cdot 2^{m+1} + 2^m$  so that exactly one of  $k_1$  and  $k_2$  have a 1 in the  $2^m$  place of their binary representations, a contradiction. Hence there is no way to subtract 4 and divide the remaining 13k - 2 into three heaps such that the resulting position has nim-value 4(k - a) + 2. Finally, suppose we subtract 3 and divide the remaining 13k - 1 into exactly 2 heaps of size  $13k_1 + j_1$  and  $13k_2 + j_2$  where again either  $j_i \in J$  or  $j_i = 5$  and  $k_i = 0$ . By induction, the nim-value of the resulting position is  $4(k_1 \oplus k_2) + 9(j_1) \oplus 9(j_2)$ . We therefore have the following three equations, corresponding to Equations (5)-(7):

$$(13k_1 + j_1) + (13k_2 + j_2) = 13k - 1, (10)$$

$$k_1 \oplus k_2 = k - a,\tag{11}$$

$$\mathcal{G}(j_1) \oplus \mathcal{G}(j_2) = 2. \tag{12}$$

From (10) we have  $j_1 + j_2 \equiv -1 \pmod{13}$ , but  $j_i \leq 18$  so that  $j_1 + j_2 \leq 36$  giving  $j_1 + j_2 \in \{12, 25\}$ . Hence from (10),  $k_1 + k_2 = k - 1$  or  $k_1 + k_2 = k - 2$ . But we saw previously that  $k_1 + k_2 = k - 1$  is inconsistent with (11) (which is the same as (9)), and k - 2, k - a have opposite parity. Hence there is no way to subtract 3 and divide the remaining 13k - 1 into two heaps such that the resulting position has nim-value 4(k - a) + 2, and this concludes the proof of Lemma 3.

**Lemma 4.** For all  $a \ge 1$ , there is a move from a heap of size 13k + j to positions with nim-values 4(k-a) + 1, 4(k-a) and 4(k-a) - 1.

*Proof.* As in the proof of the previous lemma, we can move to a position with a given nim-value if a heap of size n has the desired value where  $n \le 13k + j - 6$  and  $13k + j - n \equiv 0 \pmod{2}$ . Since  $j \ge 1$ , this will certainly be the case if  $n \le 13(k-1) + 8$  and 13k + j - n is even. Hence, we obtain nim-value 4(k-a) + 1 with either n = 13(k-a) + 7 or n = 13(k-a) + 4 (one or the other will always do since they have opposite parity), we obtain nim-value 4(k-a) with either n = 13(k-a) + 6 or n = 13(k-a) + 3, and we obtain nim-value 4(k-a) - 1 with either n = 13(k-a-1) + 11 or n = 13(k-a-1) + 18. □

We now know that from a heap of size 13k + j, we can move to a position with nim-value g for any  $g \le 4k - 2$ , with one exception given by Lemma 3. This in fact proves part (b) of Theorem 2, as it shows that from a heap of size

$$13((q+1) \cdot 2^{m+1} + 2^m + 1) + 2,$$

we cannot move to a position with value  $2^{m+3}q + 2^{m+2} + 2$ , but we can move to a position with value g for all  $g < 2^{m+3}q + 2^{m+2} + 2$ , so

$$\mathcal{G}(13((q+1)\cdot 2^{m+1}+2^m+1)+2) = 2^{m+3}q + 2^{m+2} + 2.$$

To finish the proof of Theorem 2, we must show that for all nonexceptional heaps 13k + j we can move to a position with value g for  $4k - 1 \le g < 4k + \mathcal{G}(j)$ , but we cannot move to a position with value  $4k + \mathcal{G}(j)$ . Table 2 accomplishes the former, giving explicit moves for each  $j \in J$ .

It remains to show that there is no move from a heap of size 13k + j to a position with nim-value  $4k + \mathcal{G}(j)$ . First, subtracting 1 leaves 13k + j - 1. By induction, if  $j - 1 \in J$ , then  $\mathcal{G}(13k + j - 1) = 4k + \mathcal{G}(j - 1)$ , but  $\mathcal{G}(j) \neq \mathcal{G}(j - 1)$  for  $j, j - 1 \in J$ ; otherwise  $j + 12 \in J$  and

$$\mathcal{G}(13k+j-1) = \mathcal{G}(13(k-1)+j+12) = 4(k-1)+\mathcal{G}(j+12) < 4k+G(j).$$

This leaves us with two cases to consider: moves that split 13k + j - 4 into exactly three heaps, and moves that split 13k + j - 3 into exactly two heaps. Following the approach in the proof of Lemma 3, splitting 13k + j - 4 into heaps of size  $13k_i + j_i$  with either  $j_i \in J$  or  $j_i = 5$  and  $k_i = 0$  gives us three equations, for which we must show there is no solution:

$$(13k_1 + j_1) + (13k_2 + j_2) + (13k_3 + j_3) = 13k + j - 4,$$
(13)

$$k_1 \oplus k_2 \oplus k_3 = k,\tag{14}$$

$$\mathcal{G}(j_1) \oplus \mathcal{G}(j_2) \oplus \mathcal{G}(j_3) = \mathcal{G}(j). \tag{15}$$

Equation (14) tells us that  $k_1 + k_2 + k_3 \ge k_1 \oplus k_2 \oplus k_3 = k$ , so we can rewrite (13) as:

$$j - 4 - j_1 - j_2 - j_3 = 13(k_1 + k_2 + k_3 - k) \ge 0.$$
 (16)

For each j there are limited choices for  $j_1$ ,  $j_2$ ,  $j_3$  satisfying both

$$j_1 + j_2 + j_3 \equiv j - 4 \pmod{13}$$
 and  $j_1 + j_2 + j_3 \le j - 4$ ,

and we can verify by hand that none of them also satisfy (15). The same approach can be used for moves which split 13k+j-3 into two heaps; in this case we verify by hand that there are no  $j_1$ ,  $j_2$  satisfying  $j_1+j_2 \equiv j-3 \pmod{13}$ ,  $j_1+j_2 \leq j-3$ , and  $\mathcal{G}(j_1) \oplus \mathcal{G}(j_2) = \mathcal{G}(j)$ . This completes the proof of Theorem 2.

#### 3. The games 0.200048, 0.20000048, 0.2000000048, . . .

**Theorem 5.** Let G be the game  $0.2(0)^{2n+1}48$  (i.e., 2n + 1 zeroes between the 2 and 4) and let A = 6(n + 2) + 1.

| j  | Move                                                                                                                                                      | Nim-value                                  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1  | (13k+1) - 1 = (13(k-1) + 13)                                                                                                                              | 4(k-1) + 3 = 4k - 1                        |
| 2  | (13k+2)-3 = (1) + (13(k-1)+11) $(13k+2)-1 = (13k+1)$                                                                                                      | 4(k-1) + 3 = 4k - 1 $4k$                   |
| 3  | (13k+3)-4 = (3)+(5)+(13(k-1)+4)                                                                                                                           | 4(k-1) + 3 = 4k - 1                        |
| 4  | (13k+4)-4 = (1)+(1)+(13(k-1)+11) $(13k+4)-1 = (13k+3)$                                                                                                    | 4(k-1) + 3 = 4k - 1 $4k$                   |
| 6  | (13k+6) - 1 = (13(k-1) + 18)                                                                                                                              | 4(k-1) + 3 = 4k - 1                        |
| 7  | (13k+7) - 3 = (6) + (13(k-1) + 11) $(13k+7) - 1 = (13k+6)$                                                                                                | 4(k-1) + 3 = 4k - 1 $4k$                   |
| 8  | (13k+8) - 4 = (2) + (2) + (13(k-1) + 13)                                                                                                                  | 4(k-1) + 3 = 4k - 1                        |
| 9  | (13k+9)-3 = (8) + (13(k-1)+11) $(13k+9)-1 = (13k+8)$                                                                                                      | 4(k-1) + 3 = 4k - 1  4k                    |
| 10 | (13k+10)-4 = (3) + (3) + (13(k-1)+13) $(13k+10)-3 = (1) + (13k+6)$ $(13k+10)-1 = (13k+9)$                                                                 | 4(k-1) + 3 = 4k - 1 $4k$ $4k + 1$          |
| 11 | (13k+11) - 3 = (3) + (13(k-1) + 18) $(13k+11) - 4 = (2) + (2) + (13k+3)$ $(13k+11) - 3 = (1) + (13k+7)$ $(13k+11) - 1 = (13k+10)$                         | 4k-1 $4k$ $4k+1$ $4(k-1)+3=4k+2$           |
| 12 | (13k+12)-4 = (4) + (4) + (13(k-1)+13) $(13k+12)-4 = (1) + (1) + (13k+6)$ $(13k+12)-4 = (2) + (2) + (13k+4)$                                               | 4(k-1) + 3 = 4k - 1 $4k$ $4k + 1$          |
| 13 | (13k+13)-4 = (1) + (3) + (13(k-1)+18) $(13k+13)-4 = (3) + (3) + (13k+3)$ $(13k+13)-3 = (3) + (13k+7)$ $(13k+13)-1 = (13k+12)$                             | 4(k-1) + 3 = 4k - 1 $4k$ $4k + 1$ $4k + 2$ |
| 18 | (13k+18) - 4 = (7) + (7) + (13(k-1) + 13) $(13k+18) - 4 = (3) + (3) + (13k+8)$ $(13k+18) - 4 = (5) + (5) + (13k+4)$ $(13k+18) - 4 = (1) + (1) + (13k+12)$ | 4(k-1) + 3 = 4k - 1 $4k$ $4k + 1$ $4k + 2$ |

**Table 2.** Moving to a position with nim-value g,  $4k - 1 \le g < 4k + \mathcal{G}(j)$ .

- (a) If k > 0 then  $\mathcal{G}(Ak + j) = 4k + \mathcal{G}(j)$  unless j = 2 and k is of the form  $(q+1) \cdot 2^{m+1} + 2^m + 1, q, m > 0.$
- (b) For q, m > 0,  $\mathcal{G}(A((q+1) \cdot 2^{m+1} + 2^m + 1) + 2) = 2^{m+3}q + 2^{m+2} + 2$ .

*Proof.* It is not too difficult to prove that the generic game  $0.2(0)^{2n+1}48$  has initial nim-sequence 0,  $(0, 1)^{n+2}$ , 2,  $(0, 1)^{n+2}$ ,  $(2, 3)^{n+2}$ . The proof is now a repetition of that for 0.2048, with fewer special cases to be considered. We leave this to the reader.

#### References

[Albert et al. 2007] M. Albert, R. J. Nowakowski, and D. Wolfe, Lessons in play, A. K. Peters, Natick, MA, 2007.

[Althöfer and Bültermann 1995] I. Althöfer and J. Bültermann, "Superlinear period lengths in some subtraction games", Theoret. Comput. Sci. 148:1 (1995), 111–119.

[Austin 1976] R. B. Austin, Impartial and partizan games, Master's thesis, University of Calgary, 1976.

[Berlekamp et al. 2001] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways for your mathematical plays, I, 2nd ed., A. K. Peters, Natick, MA, 2001.

[Berlekamp et al. 2003] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways for your mathematical plays, III, 2nd ed., A. K. Peters, Natick, MA, 2003.

[Caines et al. 1999] I. Caines, C. Gates, R. K. Guy, and R. J. Nowakowski, "Unsolved problems: periods in taking and splitting games", Amer. Math. Monthly 106:4 (1999), 359-361.

[Flammenkamp 2012] A. Flammenkamp, "Sprague-nim-values of some octal games", 2012, http://wwwhomes.uni-bielefeld.de/achim/octal.html.

[Gangolli and Plambeck 1989] A. Gangolli and T. Plambeck, "A note on periodicity in some octal games", Internat. J. Game Theory 18:3 (1989), 311-320.

[Guy and Nowakowski 2002] R. K. Guy and R. J. Nowakowski, "Unsolved problems in combinatorial games", pp. 457-473 in More games of no chance (Berkeley, CA, 2000), edited by R. J. Nowakowski, Math. Sci. Res. Inst. Publ. 42, Cambridge Univ. Press, 2002.

[Horrocks and Nowakowski 2003] D. G. Horrocks and R. J. Nowakowski, "Regularity in the G-sequences of octal games with a pass", Integers 3 (2003), G1, 10.

[Howse and Nowakowski 2004] S. Howse and R. J. Nowakowski, "Periodicity and arithmeticperiodicity in hexadecimal games", Theoret. Comput. Sci. 313:3 (2004), 463-472.

jpg@alum.mit.edu D. E. Shaw Research, 120 West 45th Street, 39th Floor,

New York, New York 10036, United States

rjn@mathstat.dal.ca Mathematics and Statistics, Dalhousie University,

Halifax B3H 3J5, Canada