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A ruler regularity in hexadecimal games
J.P. GROSSMAN AND RICHARD J. NOWAKOWSKI

An important problem in the theory of impartial games is to determine the
regularities of their nim-sequences. Subtraction games have periodic nim-
sequences and those of octal games are conjectured to be periodic, but the
possible regularities of the nim-sequence of a hexadecimal game are unknown.
Periodic and arithmetic periodic nim-sequences have been discovered but other
patterns also exist. We present an infinite set of hexadecimal games, based on
the game 0.2048, that exhibit a regularity — ruler regularity — not yet reported
or codified.

1. Introduction

A taking-and-breaking game [Albert et al. 2007; Berlekamp et al. 2001] is an
impartial combinatorial game, played with heaps of beans on a table. A move for
either player consists of choosing a heap, removing a certain number of beans
from the heap, and then possibly splitting the remainder into several heaps; the
winner is the player making the last move. For example, both Grundy’s Game
(choose a heap and split it into two unequal heaps) and Couples-Are-Forever
(choose a heap with at least three beans and split it into two) are taking-and-
breaking games with very simple rules, however neither has been solved.

We present an overview of the required theory of impartial games. The reader
can consult the references above for a more in-depth grounding in the theory of,
and for more details about, subtraction and octal games.

The followers of a game are all those positions which can be reached in one
move. The minimum excluded value of a set S is the least nonnegative integer
which is not included in S and is denoted mex(S). The nim-value of an impartial
game G, denoted by G(G), is given by G(G)=mex{G(H)|H is a follower of G}.
The values in the set {G(H)|H is a follower of G} are called excluded values for
G(G). An impartial game G is a previous player win (i.e., the next player has
no good move) if and only if G(G)= 0. The exclusive or (XOR), or nim-sum,
of two nonnegative integers a, b, written a⊕ b, consists of adding their binary
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representations with no carrying; for example, 3 ⊕ 6 = (11 ⊕ 110)base 2 =

101base 2 = 5. The disjunctive sum of games G and H , written G + H , is the
game where a player chooses either of the two and plays in that game; the
nim-value of a disjunctive sum satisfies G(G+H)= G(G)⊕G(H). Taking-and-
breaking games are examples of disjunctive games — choose one heap and play
in it. To know how to play these game well, it suffices to know what the nim-
values are for individual heaps. For a given game G, let G(i) be the nim-value
of G played with a heap of size i . We define the nim-sequence for a taking-
and-breaking game to be the sequence G(0), G(1), G(2), . . . . A nim sequence is
periodic if there exist N and p such that G(n+ p) = G(n) for all n ≥ N . It is
arithmetic-periodic if there exist N , p and s such that G(n+ p)= G(n)+ s for
all n ≥ N , where s is called the saltus.

In a hexadecimal game, after removing beans from a heap the remainder
can be split into at most three heaps. The rules for a hexadecimal game are
described by a hexadecimal code 0.d1d2 . . . du where 0 ≤ di ≤ 15. This is an
extension of the octal code used in [Berlekamp et al. 2001]. We use the letters
A, B, C, D, E, F for the numbers 10 through 15 respectively. If di = 0 then a
player cannot take i beans away from a heap. If di = a323

+ a222
+ a121

+ a020

where ai is 0 or 1, a player can remove i beans from the heap provided he leaves
the remainder in exactly j heaps for some j with a j = 1. If 0≤ di ≤ 7 for all i
then this is called an octal game. This restriction allows a heap to be split into
no more than 2 heaps. A subtraction game has di = 0 or 3; that is, a player can
remove beans but cannot split the heap.

The nim-sequence of a subtraction game with a finite subtraction set is periodic
[Albert et al. 2007; Berlekamp et al. 2001]. In [Althöfer and Bültermann 1995],
it is shown that the sequence of nim-values of games with small subtraction sets
can have long periods. It is conjectured that all octal games also have periodic
nim-sequence in unsolved problem 2 of [Guy and Nowakowski 2002]. This
appears to be hard. For example, in the game 0.106 Flammenkamp computed
the period length as 328226140474 and preperiod length as 465384263797. See
[Flammenkamp 2012] for this and other searches for long periods, also see
[Berlekamp et al. 2001; Caines et al. 1999; Gangolli and Plambeck 1989]. It
is interesting to note that while octal games cannot have arithmetic-periodic
nim-sequences [Austin 1976], if a single pass move is allowed then not only do
arithmetic-period nim-sequences occur, but also nim-sequences composed of a
periodic subsequence and an arithmetic-periodic subsequence occur called sapp
sequences [Horrocks and Nowakowski 2003].

For hexadecimal games, there is an even richer selection of behaviours [Howse
and Nowakowski 2004]):
• Periodic: 0.B, period 2 with no preperiod.
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• Arithmetic-periodic: 0.137F has nim-sequence 0, 1, 1, 2, 2, 3, 3, . . . , where
G(2m− 1)= G(2m)= m and G(2m+ 1)= G(2m)+ 1= m+ 1 for m ≥ 1.
In this case, the saltus is 1 and the period length is 2.

• Sapp regularity: 0.205200C has the nim-sequence consisting of

(a) periodic subsequences G(40k+ 19)= 6 and G(40k+ 39)= 14, and
(b) arithmetic-periodic subsequences

G(40k+ j)= G(40(k− 1)+ j)+ 16, j 6= 19, 39, k ≥ 0,

with preperiod length of 4, period length of 40.

• In [Howse and Nowakowski 2004], it is noted that 0.123456789 exhibits
another type of regularity. Starting with n = 0, the first fifteen nim-values
are 0, 1, 0, 2, 2, 1, 1, 3, 2, 4, 4, 5, 5, 6, 4, and thereafter

G(2m− 1)= G(2m)= m− 1,

except G(2k
+ 6) = 2k

− 1. The nim-sequence is essentially arithmetic-
periodic, but with an infinite number of exceptional values that occur in a
geometric fashion.

In this paper, we report another new regularity: ruler-regularity. This concept
is taken from the markings of a foot ruler. (See [Berlekamp et al. 2003, page 470,
Figure 7], “The G-values for the RULER game”, except for us the ruler needs to
be rotated by 45 degrees and then flipped!)

Definition 1. A sequence is ruler regular if there are positive integers N , p, s, r
and a finite set of integers K such that G(n+ p)= G(n)+ s for all n ≥ N except

n = r((q + 1)2m+1
+ 2m

+ 1)+ k, k ∈ K , q, m ≥ 0,

when

G(r((q + 1)2m+1
+ 2m

+ 1)+ k)= G(r(q2m+1
+ 2m

+ 1)+ k)+ 2m+3.

This is illustrated in Figure 1 for 0.2048, where r = 13. New “lines” start at
(m, q)= (1, 0), (2, 0), . . . , and are indicated in the top graph. A ruler-regular
nim-sequence appears arithmetic-periodic regardless of how far we extend the se-
quence, but before the sequence goes far enough to ensure arithmetic-periodicity
(approximately 3e + 8ps3, where e is the size of the largest heap which is
not in the period; see [Howse and Nowakowski 2004, Theorem 4]), a new
term arises which essentially doubles the length of the apparent period. In this
paper we show that 0.20 . . . 048, where there are an odd number of 0s in the
hexadecimal code, are ruler-regular. These are not the only such games, for
instance 0.21317809532, 0.31711188 (Figure 2, top), 0.321432132900903213,
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Figure 1. The first 350 values (top) and the first 4000 (bottom) of the
G-sequence of 0.2048.

and 0.404008 (Figure 2, bottom) all appear to be ruler-regular with |K | = 1.
(Actually, 0.404008 isn’t precisely ruler-regular; the sharp-eyed reader will have
noticed the same behaviour as in 0.123456789 happening along the first diagonal
underneath the main diagonal, in tandem with the point starting the new “line”.)
The game 0.9138B835B has |K | = 3; see Figure 3.

All of the previously known regularities — periodic, arithmetic-periodic and
sapp — have the property that only a finite number of nim-values have to be
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Figure 2. Top: 0.31711188. Bottom: 0.404008.

calculated to identify the type of regularity. However, as yet we have no similar
mechanism to check for ruler-regularity.

2. The hexadecimal game 0.2048

In the hexadecimal game 0.2048, the legal moves are to:

• subtract 1 from a heap of size ≥ 2;
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Figure 3. 0.9138B835B.

• subtract 3 from a heap and split the remainder into exactly two heaps;

• subtract 4 from a heap and split the remainder into exactly three heaps.

Here are the first 21 nim-values for this game; they can be computed fairly easily
by hand.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
G(n) 0 0 1 0 1 2 0 1 0 1 2 3 2 3 4 5 4 5 3 4 5

Theorem 2. For the game 0.2048:

(a) If k ≥ 0 and j ∈ {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 18}, then G(13k+ j)=
4k+G( j) unless j = 2 and k is of the form

(q + 1)2m+1
+ 2m

+ 1, (q, m ≥ 0).

(b) For q, m ≥ 0, G
(
13((q + 1)2m+1

+ 2m
+ 1)+ 2

)
= 2m+3q + 2m+2

+ 2.

Part (b) of the theorem describes the exceptional values which form the ruler
pattern. Equivalently stated, if

k = (q + 1)2m+1
+ 2m

+ 1

then
G(13k+ 2)= 4(k− 2m+1

− 1)+ 2.
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m q = 0 q = 1 q = 2 q = 3 q = 4 Differences
0 (54,6) (80,14) (106,22) (132,30) (158,38) (13·2,8)
1 (93,10) (145,26) (197,42) (249,58) (301,74) (13·4,16)
2 (171,18) (275,50) (379,82) (483,114) (587,146) (13·8,32)
3 (327,34) (535,98) (743,162) (951,226) (1159,290) (13·16,64)
4 (639,66) (1055,194) (1471,322) (1887,450) (2303,578) (13·32,128)
5 (1263,130) (2095,386) (2927,642) (3759,898) (4591,1154) (13·64,256)
6 (2511,258) (4175,770) (5839,1282) (7503,1794) (9167,2306) (13·128,512)

Table 1. The “lines” m = 0, 1, . . . , 6.

These exception values form lines, each of slope 4
13 , indexed by m ≥ 0 starting

at (39× 2m
+ 15, 2m+2

+ 2), and the other points on the “line” are given by
(39× 2m

+ 15, 2m+2
+ 2)+ 13(2m+1, 2m+3). This is illustrated in Table 1. The

annotations “m =” in Figure 1 indicate the start of the m-th line. In the top
half of the figure, the four points m = 4, q = 0 through m = 1, q = 7 lie on
a “rule” of negative slope. For a given k ≥ 0, starting with the point in the
bottom right position of this line, the coordinates of the k-th new rule are given
by Theorem 2(b) with

(m, q)= (k, 0), (k−1, 1), (k−2, 3), . . . , (k− i, 2i
−1), . . . , (0, 2k

−1).

The difference between consecutive points is (−13 · 2m−1, 2m+1) which gives a
slope of − 4

13 . The other set of interesting points are the ones given by (m, 0),
m = 1, 2, . . . . These also fall on a line and this has slope 4

3·13 .
Before we embark on the proof of Theorem 2, let us take a moment to discuss

the statement of the theorem and make a few simple observations that will
be of use later on. First, the set J = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 18}
is a modified set of remainders (mod 13) chosen so that for j ∈ J we have
0≤ G( j)≤ 3. These are the values of G( j) for j ∈ J :

j 1 2 3 4 6 7 8 9 10 11 12 13 18

G( j) 0 1 0 1 0 1 0 1 2 3 2 3 3

Our proof of Theorem 2 is by induction, where we divide into cases based
on j , the residue modulo 13. For each j ∈ J , we must show that G(13k+ j) is
as described by the theorem. In order to show that G(n)= g, it is necessary to
(i) prove that for all g′ < g there is a move from a heap of size n to a position
with nim-value g′, and (ii) prove that there is no move from a heap of size n to
a position with nim-value g. Note that (a) holds trivially with k = 0, so in all
that follows, let k > 0 and j ∈ J , and suppose inductively that the statement of
Theorem 2 holds for heaps smaller than 13k+ j . We begin with a lemma:
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Lemma 3. For all 1 ≤ a ≤ k there is a move from a heap of size 13k + j to a
position with nim-value 4(k − a)+ 2 unless k = (q + 1)2m+1

+ 2m
+ 1, j = 2

and a = 2m+1
+ 1, in which case there is no move from a heap of size 13k+ j to

a position with nim-value 4(k− a)+ 2.

Proof. We first consider the nonexceptional cases where j 6= 2 or a 6= 2m+1
+ 1

or k 6= (q + 1)2m+1
+ 2m

+ 1, and show that there is a move from a heap of size
13k+ j to a position with nim-value 4(k−a)+2. We can subtract 4 and split the
remainder into three heaps of size r , r and 13k+ j − 4− 2r . The nim-value of
this position is simply G(13k+ j − 4− 2r), so it certainly suffices to find r ≥ 1
such that G(13k+ j − 4− 2r)= 4(k− a)+ 2. In other words, it suffices to find
n ≤ 13k+ j−6 such that 13k+ j−n ≡ 0 (mod 2) and G(n)= 4(k−a)+2. For
a = k, either n = 5 or n = 10 will satisfy these conditions unless 13k+ j = 14,
but for this case we simply subtract 3 and divide into heaps of 10 and 1. For
a < k we consider two cases:

Case 1: j + a ≡ 0 (mod 2). Take n = 13(k − a) + 10. Then by induction,
G(n) = 4(k − a)+ 2, and also 13k + j − n ≡ j + a ≡ 0 (mod 2), so we are
done if 13(k − a)+ 10 ≤ 13k + j − 6, which is equivalent to 16 ≤ 13a + j .
This is certainly the case if a > 1, so we need only to consider a = 1 in which
case the inequality becomes j ≥ 3. This in turn is true unless j = 1 or j = 2,
but j 6= 2 because we are considering the case j + a ≡ 0 (mod 2). Thus, it
remains to show that there is a move from a heap of size 13k+ 1 to a position
with nim-value 4(k − 1) + 2. We can accomplish this by subtracting 3 and
splitting the remainder into two heaps of size 1 and 13k − 3; by induction
G(1)⊕G(13k− 3)= 0⊕G(13(k− 1)+ 10)= 4(k− 1)+ 2.

Case 2: j + a≡ 1 (mod 2). Let m be the number of trailing zeros in the binary
representation of k − a. Theorem 2(b) states that 4(k − a)+ 2 appears as an
exceptional value G(n) for n = 13(k−a+2m+1

+1)+2. If either a > 2m+1
+1

or a = 2m+1
+ 1 and j > 2 then n = 13(k− a+ 2m+1

+ 1)+ 2 < 13k+ j , so by
induction we can assume that G(n)= 4(k−a)+2. Then there is some q such that
4(k−a)+ 2= 2m+3q+ 2m+2

+ 2, and so 13k+ j − n ≡ j +a− 1≡ 0 (mod 2),
so we’re done if n ≤ 13k + j − 6, that is, 8 ≤ 13(a − 2m+1

− 1)+ j . This in
turn is true if either a > 2m+1

+ 1 or a = 2m+1
+ 1 and j ≥ 8; note that these

conditions on (a, j) subsume the previous ones. Thus, we may assume from this
point forward that a ≤ 2m+1

+ 1 and either a < 2m+1
+ 1 or j < 8. In particular,

for j ≥ 8 we may assume that a < 2m+1
+ 1. Note that by definition of m, if

d < 2m then the 1s in the binary representations of k− a and d do not overlap,
so d ⊕ (k− a)= d + (k− a), which we rewrite as

k− a = d ⊕ (k− a+ d). (1)
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We proceed by considering three cases.

Case 2.1: a ≡ 0 (mod 2), j ≡ 1 (mod 2). Since a ≥ 1 we in fact have a ≥ 2.
Let d = (a− 2)/2. Then d ≤ (2m+1

− 1)/2 < 2m and (1) becomes

k− a = d ⊕ (k− 2− d). (2)

Our strategy is now to subtract 4 and split the remaining 13k+ j−4 into exactly
three heaps of sizes 13(k−2−d)+ j1, 13d+ j2 and j3 where j1+ j2+ j3= 22+ j ,
G( j1)⊕G( j2)⊕G( j3)= 2, j3 ∈ J ∪{5} and j1, j2 ∈ J . Using induction, (2) and
the fact that 0≤ G( ji )≤ 3, the nim-value of this position is

(4(k− 2− d)+G( j1))⊕ (4d +G( j2))⊕G( j3)

= 4(d ⊕ (k− 2− d))+G( j1)⊕G( j2)⊕G( j3)= 4(k− a)+ 2.

Since j ≡ 1 (mod 2), we only need to consider j ∈ {1, 3, 7, 9, 11, 13}. We can
verify that the ji in the following table satisfy the given conditions for each
choice of j :

22+ j 23 25 29 31 33 35

j1 9 10 12 13 7 8
j2 9 10 12 13 8 9
j3 5 5 5 5 18 18

Case 2.2a: a ≡ 1 (mod 2), j ≡ 0 (mod 2), a < 2m+1+ 1, j ≥ 8 or j = 2. Let
d = (a− 1)/2 < 2m+1/2= 2m . Then (1) becomes

k− a = d ⊕ (k− 1− d). (3)

The conditions on j imply that j ∈ {2, 8, 10, 12, 18} and hence

( j + 4)/2 ∈ {3, 6, 7, 8, 11} ⊂ J.

We can therefore subtract 4 and split the remaining 13k+ j − 4 into three heaps
of size 13(k− 1− d)+ ( j + 4)/2, 13d + ( j + 4)/2 and 5. Using induction and
(3), we again find that the nim-value of this position is 4(k− a)+ 2.

Case 2.2b: a ≡ 1 (mod 2), a ≤ 2m+1+ 1, j = 4, 6. We dispense with the case
a = 1 by observing that we can subtract 4 from 13k+ 4 and split the remaining
13k into heaps of size 5, 4 and 13(k− 1)+ 4; we can subtract 3 from 13k+ 6
and split the remaining 13k + 3 into heaps of size 6 and 13(k − 1)+ 10. By
induction, the nim-value of each resulting position is 4(k− 1)+ 2. Now assume
that a ≥ 3, and let d = (a− 3)/2≤ (2m+1

− 2)/2 < 2m . Then (1) becomes

k− a = d ⊕ (k− 3− d). (4)
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Our strategy is to again subtract 4 and split the remaining 13k+ j−4 into exactly
three heaps of size 13(k−3−d)+ j1, 13d+ j2 and j3 where j1+ j2+ j3= 35+ j ,
G( j1)⊕G( j2)⊕G( j3)= 2, j3 ∈ J ∪{5} and j1, j2 ∈ J . Using induction, (4) and
the fact that 0≤ G( ji )≤ 3, we again find that the nim-value of this position is
4(k−a)+2. We can verify that for j = 4 we can take ( j1, j2, j3)= (10, 11, 18)

and for j = 6 we can take ( j1, j2, j3)= (11, 12, 18).
The only remaining values of j and a to consider are j = 2 and a = 2m+1

+1;
in all other cases we have shown that there is a move from a heap of size 13k+ j
to a position with nim-value 4(k−a)+2. Recall that m is the number of trailing
zeros in the binary representation of k−a, thus k−a is of the form q ·2m+1

+2m

for some q ≥ 0, that is k = (k−a)+a = (q+1) ·2m+1
+2m
+1. This is exactly

the case excepted by the statement of the lemma, so all that remains to be shown
is that in this case there is no move from a heap of size 13k + j to a position
with nim-value 4(k − a)+ 2. First, observe that subtracting 1 leaves a heap
which by induction has nim-value 4k. Next, suppose we subtract 4 and divide
the remaining 13k − 2 into exactly 3 heaps. We can express the size of these
heaps as 13k1+ j1, 13k2+ j2, and 13k3+ j3, where for i = 1, 2, 3 either ji ∈ J
or ji = 5 and ki = 0. By induction, the nim-value of the resulting position is:

(4k1+G( j1))⊕ (4k2+G( j2))⊕ (4k3+G( j3))

= 4(k1⊕ k2⊕ k3)+G( j1)⊕G( j2)⊕G( j3).

If this is equal to 4(k− a)+ 2 then the following three equations must hold:

(13k1+ j1)+ (13k2+ j2)+ (13k3+ j3)= 13k− 2, (5)

k1⊕ k2⊕ k3 = k− a, (6)

G( j1)⊕G( j2)⊕G( j3)= 2. (7)

From (5) we have j1+ j2+ j3 ≡−2 (mod 13). On the other hand, since ji ≤ 18
we have j1 + j2 + j3 ≤ 54, thus j1 + j2 + j3 ∈ {11, 24, 37, 50}. There are no
choices of j1, j2, j3 ∈ J which sum to 50. If j1+ j2+ j3 = 37 then they can’t
all be ≤ 13, so one of them is 18 and the other two sum to 19, but we can
verify by hand that for all such choices we have G( j1)⊕G( j2)⊕G( j3)= 0. If
j1+ j2+ j3 = 24 then from (5) k1+ k2+ k3 = k− 2. But a = 2m+1

+ 1 is odd
and k1⊕ k2⊕ k3 = k − a, so in this case k1 + k2 + k3 and k1⊕ k2⊕ k3 would
have opposite parity which is impossible. Finally, if j1+ j2+ j3 = 11 then each
ji ≤ 9, so in order to satisfy (7) one of them must be 5, say j3, hence k3 = 0. We
are then left with two equations:

k1+ k2 = k− 1, (8)

k1⊕ k2 = k− a. (9)
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Now k1 + k2 = k1 ⊕ k2 + 2(k1&k2), where & denotes bitwise Boolean AND.
Equations (8) and (9) therefore give us 2(k1&k2)=k1+k2−k1⊕k2=a−1=2m+1

which implies that k1&k2 = 2m and so k1 and k2 both have a 1 in the 2m place
of their binary representations. But k1 ⊕ k2 = k − a = q · 2m+1

+ 2m so that
exactly one of k1 and k2 have a 1 in the 2m place of their binary representations,
a contradiction. Hence there is no way to subtract 4 and divide the remaining
13k−2 into three heaps such that the resulting position has nim-value 4(k−a)+2.
Finally, suppose we subtract 3 and divide the remaining 13k− 1 into exactly 2
heaps of size 13k1+ j1 and 13k2+ j2 where again either ji ∈ J or ji =5 and ki =0.
By induction, the nim-value of the resulting position is 4(k1⊕k2)+G( j1)⊕G( j2).
We therefore have the following three equations, corresponding to Equations
(5)–(7):

(13k1+ j1)+ (13k2+ j2)= 13k− 1, (10)

k1⊕ k2 = k− a, (11)

G( j1)⊕G( j2)= 2. (12)

From (10) we have j1 + j2 ≡ −1 (mod 13), but ji ≤ 18 so that j1 + j2 ≤ 36
giving j1+ j2 ∈ {12, 25}. Hence from (10), k1+ k2 = k− 1 or k1+ k2 = k− 2.
But we saw previously that k1 + k2 = k − 1 is inconsistent with (11) (which
is the same as (9)), and k − 2, k − a have opposite parity. Hence there is no
way to subtract 3 and divide the remaining 13k− 1 into two heaps such that the
resulting position has nim-value 4(k− a)+ 2, and this concludes the proof of
Lemma 3. �

Lemma 4. For all a ≥ 1, there is a move from a heap of size 13k+ j to positions
with nim-values 4(k− a)+ 1, 4(k− a) and 4(k− a)− 1.

Proof. As in the proof of the previous lemma, we can move to a position with a
given nim-value if a heap of size n has the desired value where n ≤ 13k+ j − 6
and 13k + j − n ≡ 0 (mod 2). Since j ≥ 1, this will certainly be the case if
n≤13(k−1)+8 and 13k+ j−n is even. Hence, we obtain nim-value 4(k−a)+1
with either n = 13(k−a)+ 7 or n = 13(k−a)+ 4 (one or the other will always
do since they have opposite parity), we obtain nim-value 4(k − a) with either
n = 13(k− a)+ 6 or n = 13(k− a)+ 3, and we obtain nim-value 4(k− a)− 1
with either n = 13(k− a− 1)+ 11 or n = 13(k− a− 1)+ 18. �

We now know that from a heap of size 13k+ j , we can move to a position
with nim-value g for any g ≤ 4k − 2, with one exception given by Lemma 3.
This in fact proves part (b) of Theorem 2, as it shows that from a heap of size

13((q + 1) · 2m+1
+ 2m

+ 1)+ 2,
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we cannot move to a position with value 2m+3q+ 2m+2
+ 2, but we can move to

a position with value g for all g < 2m+3q + 2m+2
+ 2, so

G(13((q + 1) · 2m+1
+ 2m

+ 1)+ 2)= 2m+3q + 2m+2
+ 2.

To finish the proof of Theorem 2, we must show that for all nonexceptional heaps
13k+ j we can move to a position with value g for 4k− 1≤ g < 4k+G( j), but
we cannot move to a position with value 4k+G( j). Table 2 accomplishes the
former, giving explicit moves for each j ∈ J .

It remains to show that there is no move from a heap of size 13k + j to a
position with nim-value 4k+G( j). First, subtracting 1 leaves 13k+ j − 1. By
induction, if j−1 ∈J, then G(13k+ j−1)= 4k+G( j−1), but G( j) 6= G( j−1)

for j, j − 1 ∈ J ; otherwise j + 12 ∈ J and

G(13k+ j − 1)= G(13(k− 1)+ j + 12)= 4(k− 1)+G( j + 12) < 4k+ G( j).

This leaves us with two cases to consider: moves that split 13k + j − 4 into
exactly three heaps, and moves that split 13k + j − 3 into exactly two heaps.
Following the approach in the proof of Lemma 3, splitting 13k+ j−4 into heaps
of size 13ki + ji with either ji ∈ J or ji = 5 and ki = 0 gives us three equations,
for which we must show there is no solution:

(13k1+ j1)+ (13k2+ j2)+ (13k3+ j3)= 13k+ j − 4, (13)

k1⊕ k2⊕ k3 = k, (14)

G( j1)⊕G( j2)⊕G( j3)= G( j). (15)

Equation (14) tells us that k1+ k2+ k3 ≥ k1⊕ k2⊕ k3 = k, so we can rewrite
(13) as:

j − 4− j1− j2− j3 = 13(k1+ k2+ k3− k)≥ 0. (16)

For each j there are limited choices for j1, j2, j3 satisfying both

j1+ j2+ j3 ≡ j − 4 (mod 13) and j1+ j2+ j3 ≤ j − 4,

and we can verify by hand that none of them also satisfy (15). The same approach
can be used for moves which split 13k+ j−3 into two heaps; in this case we verify
by hand that there are no j1, j2 satisfying j1+ j2≡ j−3 (mod 13), j1+ j2≤ j−3,
and G( j1)⊕G( j2)= G( j). This completes the proof of Theorem 2.

3. The games 0.200048, 0.20000048, 0.2000000048, . . .

Theorem 5. Let G be the game 0.2(0)2n+148 (i.e., 2n+ 1 zeroes between the 2
and 4) and let A = 6(n+ 2)+ 1.
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j Move Nim-value

1 (13k+ 1)− 1= (13(k− 1)+ 13) 4(k− 1)+ 3= 4k− 1

2
(13k+ 2)− 3= (1)+ (13(k− 1)+ 11) 4(k− 1)+ 3= 4k− 1

(13k+ 2)− 1= (13k+ 1) 4k

3 (13k+ 3)− 4= (3)+ (5)+ (13(k− 1)+ 4) 4(k− 1)+ 3= 4k− 1

4
(13k+ 4)− 4= (1)+ (1)+ (13(k− 1)+ 11) 4(k− 1)+ 3= 4k− 1

(13k+ 4)− 1= (13k+ 3) 4k

6 (13k+ 6)− 1= (13(k− 1)+ 18) 4(k− 1)+ 3= 4k− 1

7
(13k+ 7)− 3= (6)+ (13(k− 1)+ 11) 4(k− 1)+ 3= 4k− 1

(13k+ 7)− 1= (13k+ 6) 4k

8 (13k+ 8)− 4= (2)+ (2)+ (13(k− 1)+ 13) 4(k− 1)+ 3= 4k− 1

9
(13k+ 9)− 3= (8)+ (13(k− 1)+ 11) 4(k− 1)+ 3= 4k− 1

(13k+ 9)− 1= (13k+ 8) 4k

10
(13k+ 10)− 4= (3)+ (3)+ (13(k− 1)+ 13) 4(k− 1)+ 3= 4k− 1

(13k+ 10)− 3= (1)+ (13k+ 6) 4k
(13k+ 10)− 1= (13k+ 9) 4k+ 1

11

(13k+ 11)− 3= (3)+ (13(k− 1)+ 18) 4k− 1
(13k+ 11)− 4= (2)+ (2)+ (13k+ 3) 4k

(13k+ 11)− 3= (1)+ (13k+ 7) 4k+ 1
(13k+ 11)− 1= (13k+ 10) 4(k− 1)+ 3= 4k+ 2

12
(13k+ 12)− 4= (4)+ (4)+ (13(k− 1)+ 13) 4(k− 1)+ 3= 4k− 1

(13k+ 12)− 4= (1)+ (1)+ (13k+ 6) 4k
(13k+ 12)− 4= (2)+ (2)+ (13k+ 4) 4k+ 1

13

(13k+ 13)− 4= (1)+ (3)+ (13(k− 1)+ 18) 4(k− 1)+ 3= 4k− 1
(13k+ 13)− 4= (3)+ (3)+ (13k+ 3) 4k

(13k+ 13)− 3= (3)+ (13k+ 7) 4k+ 1
(13k+ 13)− 1= (13k+ 12) 4k+ 2

18

(13k+ 18)− 4= (7)+ (7)+ (13(k− 1)+ 13) 4(k− 1)+ 3= 4k− 1
(13k+ 18)− 4= (3)+ (3)+ (13k+ 8) 4k
(13k+ 18)− 4= (5)+ (5)+ (13k+ 4) 4k+ 1
(13k+ 18)− 4= (1)+ (1)+ (13k+ 12) 4k+ 2

Table 2. Moving to a position with nim-value g, 4k− 1≤ g < 4k+G( j).
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(a) If k > 0 then G(Ak + j) = 4k + G( j) unless j = 2 and k is of the form
(q + 1) · 2m+1

+ 2m
+ 1, q, m ≥ 0.

(b) For q, m ≥ 0, G(A((q + 1) · 2m+1
+ 2m

+ 1)+ 2)= 2m+3q + 2m+2
+ 2.

Proof. It is not too difficult to prove that the generic game 0.2(0)2n+148 has initial
nim-sequence 0, (0, 1)n+2, 2, (0, 1)n+2, (2, 3)n+2. The proof is now a repetition
of that for 0.2048, with fewer special cases to be considered. We leave this to
the reader. �
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