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The Rat game and the Mouse game
AVIEZRI S. FRAENKEL

We define three new take-away games, the Rat game, the Mouse game and
the Fat Rat game. Three winning strategies are given for the Rat game and
outlined for the Mouse and Fat Rat games. The efficiencies of the strategies
are determined. Whereas the winning strategies of nontrivial take-away games
are based on irrational numbers, our games are based on rational numbers.
Another motivation stems from a problem in combinatorial number theory.

1. Description of the game

The Rat game is played on 3 piles of tokens by 2 players who play alternately.
Positions in the game are denoted throughout in the form (x, y, z), with 0 ≤
x ≤ y ≤ z, and moves in the form (x, y, z)→ (u, v, w), where of course also
0 ≤ u ≤ v ≤ w (see below). The player first unable to move — because the
position is (0, 0, 0)— loses; the opponent wins. There are 3 types of moves:

(I) Take any positive number of tokens from up to 2 piles.

(II) Take ` > 0 from the x pile, k > 0 from the y pile, and an arbitrary positive
number from the z pile, subject to the constraint |k− `|< a, where

a =
{

1 if y− x 6≡ 0 (mod 7),
2 if y− x ≡ 0 (mod 7).

(III) Take ` > 0 from the x pile, k > 0 from the z pile, and an arbitrary positive
number from the y pile, subject to the constraint |k − `| < b, where b = 3 if
w = u; otherwise,

b =
{

5 if w− u 6≡ 4 (mod 7),
6 if w− u ≡ 4 (mod 7).

In a move of type (II) we permit the permutation x → v, y → w, z → u
(so ` = x − v, k = y −w), in addition to x → u, y→ v, z→ w (` = x − u,
k = y− v). No other permutations are allowed for (II), and none (except x→ u,
y→ v, z→ w) for (III). For (I), any rearrangement is possible. When we write
(x, y, z)→ (u, v, w), we always mean x→ u, y→ v, z→ w.

Note that in (II), the congruence conditions depend only on 2 of the piles
moved from: the smallest and the intermediate; whereas in (III) they depend only
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on 2 of the piles moved to: the smallest and the largest. The case w = u in (III)
is an initial condition, to accommodate the end position (0, 0, 0).

Examples. Given the position p1 = (1, 2, 4). If player I takes one of the piles
in its entirety, player II wins with a type (I) move to 8 := (0, 0, 0). If player I
moves p1 → (1, 2, t), t ∈ {1, 2, 3}, player II wins with a type (III) move to
8. If player I moves p1 → (1, 1, 4), player II wins with a type (II) move to
8. It’s straightforward to see that if player I makes a move of type (I), or (II)
or (III), then player II can win by moving to 8. Consider now the position
p2 = (3, 6, 10). Then player I can make a type (III) move to p1. Indeed,
(10− 4)− (3− 1)= 4< 5= b.

What’s the motivation for inventing and analyzing this game? Why are the move
rules complicated? What’s the connection to rats? Where’s the Mouse game?
How about the Fat Rat game?

2. Two characterizations of the P-positions

Let T $ Z≥0. Define the mex operator by mex(T )=min(Z≥0 \ T )= smallest
nonnegative integer not in T . Recall that the set of P-positions of a game is the
set of positions for which the Previous (second) player can win, and the set of
N -positions is the set of positions for which the Next (first) player can win [WW;
Albert et al. 2007]. We begin with a recursive characterization of the P-positions
of the Rat game.

Theorem 1. The P-positions of the Rat game are given by

R =
∞⋃

n=0

{(an, bn, cn)},

where (a0, b0, c0)= (0, 0, 0), and for n ≥ 1,

an =mex{ai , bi , ci : 0≤ i < n},

bn = an +b(7n− 2)/4c,

cn = bn +b(7n− 3)/2c.

The first few triples of R are displayed in Table 1.
We now turn to an explicit characterization of the P-positions.
Define an infinite set of triples Sn := (An, Bn,Cn) as follows. S0 = (0, 0, 0),

and for n ∈ Z≥1,

An = b7n/4c, Bn = b7n/2c− 1, Cn = 7n− 3. (1)

Put S =
⋃
∞

n=0 Sn .
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n an bn cn

0 0 0 0
1 1 2 4
2 3 6 11
3 5 9 18
4 7 13 25
5 8 16 32
6 10 20 39
7 12 23 46
8 14 27 53
9 15 30 60

10 17 34 67
11 19 37 74
12 21 41 81
13 22 44 88
14 24 48 95
15 26 51 102

Table 1. The first few P-positions of the Rat game.

Theorem 2. The collection S constitutes the set of P-positions of the Rat game,
so S = R.

In Sections 4–6 we prove Theorems 1 and 2. Various extensions are given in
Sections 7–8, efficiencies of the winning strategies are discussed in Section 9,
and we wrap up in Section 10.

3. Preliminaries

For proving Theorem 2, which is proved first, we begin by collecting a few
properties of the set S.

Lemma 1. Let p, q ∈ Z≥1, with p > q , s ∈ Z. Then:

(i) For every t ∈ Z, the q values b(pn + s)/qc, n ∈ {t + 1, . . . , t + q} are
distinct (mod p).

(ii) For every k ∈ Z, b(p(n+ kq)+ s)/qc = b(pn+ s)/qc+ kp.

Proof. (i) Let n1, n2 ∈ {t + 1, . . . , t + q}, n1 6= n2, say n2 > n1. Then

0< (p/q)− 1< b(pn2+ s)/qc− b(pn1+ s)/qc< (p(q − 1)/q)+ 1< p,

as claimed.

(ii) Obvious. �
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It follows that for n ∈ {1, . . . , q}, b(pn + s)/qc contains distinct residues
r1 < · · ·< rq (mod p); for n ∈ {q + 1, . . . , 2q} it contains p+ r1, . . . , p+ rq ;
for n ∈ {kq + 1, . . . , (k+ 1)q} it contains kp+ r1, . . . , kp+ rq .

Let

A =
∞⋃

i=1

Ai , B =
∞⋃

i=1

Bi , C =
∞⋃

i=1

Ci .

Lemma 2. (i) Each of the sequences Ai , Bi ,Ci is strictly increasing.

(ii) The sets A, B,C partition Z≥1.

Proof. (i) Follows directly from the definition of the 3 sequences.

(ii) Note that
(⋃4

n=1 An
)
∪
(⋃2

n=1 Bn
)
∪C1 = {1, . . . , 7}. The result now follows

from Lemma 1(i). �

For n ∈ Z≥0, let

dn = Bn − An, δn = Cn − Bn, 1n = Cn − An.

Lemma 3. For n ∈ Z≥1,

dn = b(7n− 2)/4c, δn = b(7n− 3)/2c, 1n = dn + δn.

Proof. The assertion for dn is seen to hold for n = 1, 2, 3, 4. Therefore it holds
for all n ∈ Z≥1 by Lemma 1(i). Similarly, the assertion about δn is seen to hold
for n = 1, 2, therefore it holds for all n ∈ Z≥1. Finally,

1n = Cn − An = (Cn − Bn)+ (Bn − An)= δn + dn. �

Table 2 depicts the differences dn, δn,1n together with the P-positions. It
also illustrates the next few lemmas.

Lemma 4. For n ∈ Z≥1,

dn =

{
An if n ≡ 1, or 2 (mod 4),
An − 1 if n ≡ 0, or 3 (mod 4),

δn =

{
Bn − 1 if n is even,
Bn if nis odd.

Proof. The first one follows from Lemma 3 and an easy computation. Similarly
for the second. �

Lemma 5. (i) Each of the sequences dn , δn , 1n is strictly increasing.

(ii) For n ∈ Z≥1, dn < δn <1n .

(iii) For n ∈ Z≥1, the sequences dn and δn are disjoint. In fact,

dn ≡ {1, 3, 4, 6} (mod 7), δn ≡ {2, 5} (mod 7),
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n An dn Bn δn Cn 1n

0 0 0 0 0 0 0
1 1 1 2 2 4 3
2 3 3 6 5 11 8
3 5 4 9 9 18 13
4 7 6 13 12 25 18
5 8 8 16 16 32 24
6 10 10 20 19 39 29
7 12 11 23 23 46 34
8 14 13 27 26 53 39
9 15 15 30 30 60 45

10 17 17 34 33 67 50
11 19 18 37 37 74 55
12 21 20 41 40 81 60
13 22 22 44 44 88 66
14 24 24 48 47 95 71
15 26 25 51 51 102 76

Table 2. P-positions of the Rat game with their differences.

and each of the residues (mod 7) of dn and δn are assumed for infinitely
many n. Also,

dn > δ0 = 0, δn > d0 = 0, and 1n ≡ {3, 1, 6, 4} (mod 7).

(iv)
⋃
∞

n=1(dn ∪ δn)= Z≥1 \
⋃
∞

i=1{7i}.

Proof. (i) and (ii) follow from Lemma 3.

(iii) By inspection, this holds for n = 1, 2, 3, 4. It follows in general from
Lemma 1(i).

(iv) From (iii) we see that
(⋃4

n=1 dn
)
∪
(⋃2

n=1 δn
)
= {1, 2, 3, 4, 5, 6}. The result

now follows from Lemma 1(ii) by induction on k. �

Lemma 6. For n ∈ Z≥1, dn+1− dn ∈ {1, 2}, δn+1− δn ∈ {3, 4},

1n+1−1n =

{
5 if 1n ≡ 1, 3 or 6 (mod 7),
6 if 1n ≡ 4 (mod 7),

and 11−10 = 3.

Proof. Table 2 shows that the statements hold for n = 1, 2, 3, 4. Their general
truth then follows from Lemma 1. �
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4. Proof of Theorem 2

It suffices to show:

(A) Every move from (An, Bn,Cn) ∈ S results in a position outside S.

(B) For every position (x, y, z) /∈ S, there exists a move resulting in a position
in S.

(A) Since An, Bn,Cn are each strictly increasing, a move of type (I) from
(An, Bn,Cn) ∈ S, n ∈ Z≥1, clearly results in a position not in S. Suppose
that there is a move S→ S of type (II) or (III). Such a move can have one of the
following two forms:

(i) (An, Bn,Cn)→ (Ai , Bi ,Ci ), or

(ii) An→ Bi , Bn→ Ci , Cn→ Ai .

In both cases, i < n. These moves have to satisfy the following conditions.
Either:

(i1) |(Bn− Bi )− (An− Ai )|< a. Now |(Bn− Bi )− (An− Ai )| = |dn−di | ≥ 1
by Lemma 5(i). By Lemma 5(iv), y− x = dn 6≡ 0 (mod 7). Hence by the
rule of a move of type (II), a = 1, a contradiction. Or:

(i2) |(Cn −Ci )− (An − Ai )|< b. Now

|(Cn −Ci )− (An − Ai )| = |1n −1i | ≥ |1n −1n−1| = b,

a contradiction to a move of type (III).

(ii) The constraint is |(Bn −Ci )− (An − Bi )|< a. Now

|(Bn −Ci )− (An − Bi )| = |dn − δi | ≥ 1

by Lemma 5(i). As in case (i1) we have a = 1, a contradiction.

(B) Let (x, y, z) /∈ S with 0 < x ≤ y ≤ z. (If x = 0 there is a type (I) move to
(0, 0, 0).) Throughout we use the notation:

d = y− x, D = z− x .

Since the sets A, B,C partition Z≥1, there exists n ∈ Z≥1, such that either

(i) x = Cn , or

(ii) x = Bn , or

(iii) x = An .

Note that since x > 0, we have n > 0, so by Lemma 3,

0< An < Bn < Cn.
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(i) x = Cn . Then do a type (I) move, y→ An , z→ Bn .

(ii) x = Bn . If z ≥ Cn , make a type (I) move, z→ Cn , y→ An . So we may
assume z < Cn . We have An < Bn = x ≤ y ≤ z < Cn . Then make a move of
type (III): (x, y, z)→ (Ai , Bi ,Ci ), where i is the largest index such that1i ≤ D.
This move is legal:

(a) 1i ≤ D = z− x = z− Bn < z− An < Cn − An =1n . Hence i < n.

(b) x = Bn > An > Ai ; y ≥ x = Bn > Bi since i < n;

z = x + D ≥ An +1i > Ai +1i = Ci .

(c) The move has to satisfy |(z−Ci )− (x − Ai )|< b. Indeed,

|(z−Ci )− (x − Ai )| = |D−1i | = D−1i <1i+1−1i = b,

by Lemma 5(iii) and Lemma 6.

(iii) x = An . If y≥ Bn and z≥Cn (at least one of these inequalities is necessarily
strict), then make a move of type (I), y→ Bn , z→ Cn . Below we consider the
remaining 3 subcases:

(α) y ≥ Bn , z < Cn ,

(β) y < Bn , z ≥ Cn ,

(γ ) y < Bn , z < Cn .

(α) y ≥ Bn , z < Cn . Then An = x < Bn ≤ y ≤ z < Cn . We make a move
of type (III) as in case (ii) above: (x, y, z)→ (Ai , Bi ,Ci ), where i is the
largest index such that 1i ≤ D. This move is legal:

(a) 1i ≤ D = z− x = z− An < Cn − An =1n . Hence i < n.
(b) x= An> Ai ; y≥ Bn> Bi ; z= x+D≥ x+1i = An+1i > Ai+1i =Ci .
(c) |(z−Ci )− (x − Ai )| = |D−1i |< b, as in case (ii)(c) above.

(β) y < Bn , z ≥ Cn . We have An = x ≤ y < Bn < Cn ≤ z.

(β1) We first consider the case d 6≡ 0 (mod 7). Then d ∈ {di , δi } for some
i ∈ Z≥0 by Lemma 5(iv). Since d = y− An < Bn − An = dn < δn , we
have i < n.

(β11) Assume d=di . Then move (x, y, z)→ (Ai , Bi ,Ci ). This is indeed
a move of type (II):

(a) x= An> Ai ; y= An+d= An+di > Ai+di = Bi ; z≥Cn>Ci .
(b) |(y− Bi )− (x − Ai )| = |d − di | = 0< a.

(β12) Assume d = δi . Then move x→ Bi , y→ Ci , z→ Ai . It’s a move
of type (II):
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(a) Clearly z≥Cn> Ai . It remains to show that x> Bi and y>Ci .
By Lemma 4, An ≥ dn = Bn− An > y− x = d = δi ≥ Bi − 1.
Thus An ≥ Bi . By Lemma 2 we then actually have An > Bi .
Therefore also y = x + d = An + δi > Bi + δi = Ci .

(b) |(y−Ci )− (x − Bi )| = |d − δi | = 0< 1= a.

(β2) We now consider the case d ≡ 0 (mod 7). Then Lemma 5(iii) implies
d−1= di for some i ∈ Z≥0. Then move (x, y, z)→ (Ai , Bi ,Ci ). This
is a move of type (II):

(a) di = d−1= y− x−1< Bn− An−1= dn−1< dn . Hence i < n.
(b) x= An > Ai ; y= An+d= An+di+1> Ai+di = Bi ; z≥Cn >Ci .
(c) |(y− Bi )− (x − Ai )| = |d − di | = 1< 2= a.

(γ ) y < Bn , z < Cn .

(γ 1) We first assume d 6≡ 0 (mod 7). By Lemma 5 there exists i ∈ Z≥0 such
that d ∈ {di , δi }. Now d = y− An < Bn − An = dn < δn . Hence i < n.

(γ 11) We consider first the case d = di , and try a move of type (II):
(x, y, z)→ (Ai , Bi ,Ci ). Note that x = An > Ai and

y = x + d = An + di > Ai + di = Bi .

If z ≥ Ci , this is a legitimate move of type (II) (or one of type (I) if
z = Ci ). Indeed, |(y− Bi )− (x − Ai )| = |d − di | = 0< 1= a.
So suppose that z < Ci . We then do a move of type (III). Move
(x, y, z)→ (A j , B j ,C j ), where j is the largest index such that
1 j ≤ D. This move is legal:

(a) 1 j ≤ D = z− An < Cn − An =1n . Hence j < n.
(b) x = An > A j . Since z < Ci we have

1 j ≤ D = z− x < Ci − An < Ci − Ai =1i .

Hence j < i . We showed above that y > Bi . Hence y > B j .
Also z = x + D = An + D ≥ An +1 j > A j +1 j = C j .

(c) |(z−C j )−(x− A j )| = |D−1 j | = D−1 j <1 j+1−1 j = b.

(γ 12) We now deal with the case d = δi . Then move x → Bi , y→ Ci ,
z→ Ai . Recall from (γ 1) that i < n. It’s a move of type (II):

(a) Clearly z ≥ y ≥ x = An > Ai . It remains to show that x > Bi

and y>Ci . As in case (β12), Lemma 4 implies x= An≥dn>

d = δi ≥ Bi−1. Thus An ≥ Bi . By Lemma 2 we have actually
An > Bi . Therefore y = x + d = An + δi > Bi + δi = Ci .

(b) |(y−Ci )− (x − Bi )| = |d − δi | = 0< 1= a.
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(γ 2) We now take up the remaining case, d ≡ 0 (mod 7). Then Lemma 5(iii)
implies d − 1 = di for some i ∈ Z≥0. Then try a move of type (II)
(x, y, z)→ (Ai , Bi ,Ci ). We have:
(a) di = d−1= y− An−1< Bn− An−1= dn−1< dn . Hence i < n.
(b) x = An > Ai ; y = An+d = An+di +1> Ai +di = Bi . If z ≥ Ci

we indeed made a legitimate move of type (II) (or one of type (I) if
z = Ci ).

(c) |(y− Bi )− (x − Ai )| = |d − di | = 1< 2= a.
So assume z < Ci . We then do a move of type (III):

(x, y, z)→ (A j , B j ,C j ),

where j is the largest index such that1 j ≤ D. The legality of this move
is established in precisely the same way as for the type (III) move of
case (γ 11) above. �

Remark. Regarding case (B)(iii) of the proof, i.e., x = An , a move of type (III),
as in case (ii), is not always possible. Example: (x, y, z)= (17, 28, 66). Then
D = z − x = 49, so Table 1 shows that a (II)(b) move would have to be to
(15, 30, 60). This, however, is impossible, since y = 28< 30.

5. Proof of Theorem 1

For proving Theorem 1, it evidently suffices to prove the following result.

Theorem 3. For all n ∈ Z≥0, an = An , bn = Bn , cn = Cn . In other words, the
set of triples R =

⋃
∞

n=0{(an, bn, cn)}, defined recursively, constitutes the set of
P-positions of the Rat game.

Proof. We note that (a0, b0, c0) = (A0, B0,C0) = (0, 0, 0). Suppose we have
shown already that (an, bn, cn) = (An, Bn,Cn) for all n < N (N ≥ 1). Recall
from Lemma 2(ii) that the sets A, B,C partition Z≥1, and clearly An < Bn <Cn

for all n ∈ Z≥1. Therefore AN = mex{Ai , Bi ,Ci : 0 ≤ i < N }. Otherwise AN

would never be attained in the complementary sets A, B,C . Thus AN = aN .
Now Bn − An = b(7n − 2)/4c, and Cn − Bn = b(7n − 3)/2c for all n ∈ Z≥1

(Lemma 3), the same as in the recursive definition of the triples (an, bn, cn).
Hence also BN = bN , and CN = cN . �

6. A numeration systems for the Rat game

Let α be a rational or irrational number satisfying 1 < α < 2. Denote its
simple continued fraction expansion by α = [1, a1, . . .], ai ∈ Z≥1 for all i .
This expansion is unique if α is irrational. If α = [1, a1, . . . , an] is rational,
there are 2 expansions, since for an > 1, an = (an − 1)+ 1

1 . In the latter case
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we assume, for our purposes here, that α = [1, a1, . . . , a2n]. The convergents
pk/qk = [1, a1, . . . , ak] of α (k ≤ 2n if α is rational) are defined recursively in
the form

p−1 = 1, p0 = 1, pn = an pn−1+ pn−2 (n ≥ 1),

q−1 = 0, q0 = 1, qn = anqn−1+ qn−2 (n ≥ 1).

For properties of simple continued fractions see [Hardy and Wright 2008,
Chapter 10] or [Fraenkel 1982, Section 4]. It is well-known (see the previous
reference) that every positive integer N has a unique representation in the form

N =
m∑

i=0

si pi , 0≤ si ≤ ai+1, si+1 = ai+2 =⇒ si = 0 (i ≥ 0),

and also in the form

N =
m∑

i=0

ti qi , 0≤ t0 < a1, 0≤ ti ≤ ai+1, ti = ai+1 =⇒ ti−1 = 0 (i ≥ 1).

Remarks. • The p-representation of any positive integer is its represen-
tation

∑m
i=0 si pi in the p-numeration system. Analogously for the q-

representation.

• If α= [1, a1, . . . , a2n] is rational, we may assume that there is an arbitrarily
large partial quotient a2n+1, so the digits s2n and t2n can be arbitrarily large.
This permits to represent every positive number N in the numeration systems
with only finitely many pi , qi .

• Notice that 7/4= [1, 1, 3], p0= 1, p1= 2, p2= 7; q0= 1, q1= 1, q2= 4.
Further, 0 ≤ s0 ≤ 1, 0 ≤ s1 ≤ 3, s2 ≥ 0. Since q1 = 1, we have t0 = 0 for
the q-representation of every N ∈ Z≥1. The q- and p-numeration systems
for this example are portrayed in Table 3.

Theorem 4. The set A is identical to the set of numbers whose p-representation
ends in an even number of 0s. The set B is identical to the set of numbers ending
in 10 or 30, and the set C is identical to the set of numbers ending in 20.

Proof. Every term in the set A must end in an even number of 0s in the numeration
system, as was shown in [Fraenkel 1982, Section 4]. (There the results were
proved for the continued fraction of an irrational number, but the same holds for
rational numbers.) Therefore every term in B and C must end in an odd number
of 0s. Now 4 is the smallest positive number in C , it has representation 20, and
every subsequent number in C is larger than its predecessor by 7. Hence all
numbers in C have representations of the form t20, t ∈ Z≥0. Since A, B, C are
complementary, the representations of all numbers in B must end in 10 or 30. �
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p-numeration q-numeration
7 2 1 4 1 1 n

1 1 0 1
1 0 2 0 2
1 1 3 0 3
2 0 1 0 0 4
2 1 1 1 0 5
3 0 1 2 0 6

1 0 0 1 3 0 7
1 0 1 2 0 0 8
1 1 0 2 1 0 9
1 1 1 2 2 0 10
1 2 0 2 3 0 11
1 2 1 3 0 0 12
1 3 0 3 1 0 13
2 0 0 3 2 0 14
2 0 1 3 3 0 15
2 1 0 4 0 0 16

Table 3. The q- and p-numeration systems for the Rat game.

Theorem 5. Let n ∈ Z≥1, and let its digits in the q-numeration system be t2t1t0.
Then

t1 p1+ t2 p2 =

{
An if t1 = 0,
An + 1 if t1 > 0.

Proof. The proof is similar to one given in [Fraenkel 1982, Section 4], and is
therefore omitted. �

Remark. Theorem 5 states that to compute the p-representation of An , it suffices
to compute the q-representation of n, and then interpret it in the p-system (i.e.,
replace qi by pi ).

7. The Mouse game

The Mouse game is played on 2 piles of tokens by 2 players who play alternately.
Analogously to the Rat game, positions are denoted in the form (x, y), with
0≤ x ≤ y, and moves in the form (x, y)→ (u, v), where of course also 0≤ u≤ v.
The player first unable to move — because the position is (0, 0)— loses; the
opponent wins. There are 2 types of moves:

(I) Take any positive number of tokens from a single pile.
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(II) Take ` > 0 from one of the piles, k > 0 from the other, subject to the
constraint |k− `|< a, where

a =
{

1 if y− x 6≡ 0 (mod 3),
2 if y− x ≡ 0 (mod 3).

We then have:

Theorem 6. The P-positions of the Mouse game are given by (0, 0), and for
n ≥ 1, we have

An =mex{Ai , Bi : 0≤ i < n},

Bn = An +b(3n− 1)/2c.

The following is an explicit description of the P-positions.

Theorem 7. The P-positions of the Mouse game are given by (0, 0), and for
n ≥ 1, An = b3n/2c, Bn = 3n− 1.

We omit the proofs, since they are analogous to and simplified versions of
those of Theorems 1 and 2. The first few P-positions (An, Bn) together with
their differences dn = Bn − An are shown in Table 4.

We leave it to the reader to characterize the P-positions of the Mouse game
in terms of an appropriate numeration system.

n An dn Bn

0 0 0 0
1 1 1 2
2 3 2 5
3 4 4 8
4 6 5 11
5 7 7 14
6 9 8 17
7 10 10 20
8 12 11 23
9 13 13 26

10 15 14 29
11 16 16 32
12 18 17 35
13 19 19 38
14 21 20 41
15 22 22 44

Table 4. P-positions of the Mouse game with their differences dn .
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8. The Fat Rat game

The Fat Rat game is the case of the Rat game played on an arbitrary number of
m ∈ Z≥2 piles. The games for m ∈ {2, 3} were analyzed in the previous sections.
The P-positions for m = 4 are given in Table 5. This follows the general rule of

Ak
n = b(2

m
− 1)n/2m−k

c− 2k−1
+ 1, k = 1, . . . ,m, n ≥ 1.

It is not hard to see that for m = 4 the differences d i
n := Ai+1

n − Ai
n are

d1
n =

⌊15n− 4
8

⌋
, d2

n =

⌊15n− 6
4

⌋
, d3

n =

⌊15n− 7
2

⌋
,

and
∞⋃

n=1

{
d1

n , d2
n , d3

n , {15n}
}
= Z≥1.

We note that the numeration system for the case m = 4 is based on the
continued fraction 15/8= [1, 1, 7], and for the Fat Rat game,

2m
− 1

2m−1 = [1, 1, 2m−1
− 1].

n A1
n d1

n A2
n d2

n A3
n d3

n A4
n 1n

1 1 1 2 2 4 4 8 7
2 3 3 6 6 12 11 23 20
3 5 5 10 9 19 19 38 33
4 7 7 14 13 27 26 53 46
5 9 8 17 17 34 34 68 59
6 11 10 21 21 42 41 83 72
7 13 12 25 24 49 49 98 85
8 15 14 29 28 57 56 113 98
9 16 16 32 32 64 64 128 112

10 18 18 36 36 72 71 143 125
11 20 20 40 39 79 79 158 138
12 22 22 44 43 87 86 173 151
13 24 23 47 47 94 94 188 164
14 26 25 51 51 102 101 203 177
15 28 27 55 54 109 109 218 190
16 30 29 59 58 117 116 233 203

Table 5. P-positions with their differences.
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So we have the P-positions. But what are the game rules? Even for the case
m = 4, there are a priori various possibilities to be checked out. It appears that 4
types of moves are required. Perhaps the case m = 4 will point to the game rules
for general m. It appears that the transition from 3 to 4 piles is a stumbling block
in a number of games. This seems to be the case, for example, for the 3-pile
Tribonacci game, based on the Tribonacci word [Duchêne and Rigo 2008]. The
P-positions of the 3-pile Raleigh game [Fraenkel 2007] are, for all n ∈ Z≥0,

An = bbnϕcϕc, Bn = bnϕ2
c, Cn = bbnϕ2

cϕc,

where ϕ = (1+
√

5)/2 (golden section). A natural generalization to m > 3 piles
may also be nontrivial.

Sometimes already the transition from 2 to 3 piles looks difficult. Wythoff’s
game [1906; Coxeter 1953; Fraenkel 1982; Landman 2002; Duchêne and Gravier
2009] is played on 2 piles. A natural generalization to m > 2 piles was suggested
in [Fraenkel 1996], and 2 conjectures about the asymptotic structure of their
P-positions were given. Their latest form appears in [Guy and Nowakowski
2009]. Some progress on the conjectures was achieved. See [Fraenkel and
Krieger 2004; X. Sun and Zeilberger 2004; X. Sun 2005]. For example, the case
m = 3 was solved, but it is considerably more complicated than m = 2.

9. Complexity

We gave three winning strategies for the Rat game: recursive (Theorem 1),
algebraic (Theorem 2), and arithmetic (Theorem 4). Given an arbitrary game
position (x, y) ∈ Z2 of input size O(log x + log y), what’s the computational
complexity of deciding whether or not (x, y) is a P-position? We indicate briefly
that all three strategies are efficient.

Theorem 8. All three winning strategies for the Rat game are polynomial-time.

Proof. A sequence of positive integers {an}n≥0 is approximately linear, if there
exist constants α, u1, u2 ∈ R such that u1 ≤ an − nα ≤ u2 for all n ∈ Z≥1. In
[Fraenkel and Peled 2015] it is shown that for approximately linear sequences, the
mex function can be computed in polynomial time. Moreover, the sequences {an}

and {bn} are both approximately linear if and only if their difference {bn−an} is
(Theorem 4 there). Now by Theorem 1, bn− an = b(7n− 2)/4c which is clearly
approximately linear, and so is cn − bn = b(7n − 3)/2c. This implies that the
recursive strategy is polynomial. For the algebraic strategy this follows from the
discussion following Theorem 2 in [Fraenkel 1982], and for the arithmetic one it
follows from the end of that paper. �

It is not hard to see that the same result holds for the Mouse game and the Fat
Rat game.
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10. Epilogue

In addition to the quest for the analysis of multipile take-away games, there
is another motivation for inventing and analyzing the Rat game. The analysis
of most games on piles of tokens is associated with irrational numbers. Thus,
the generalized Wythoff game W (a) depends on α = (2− a+

√
a2+ 4)/2 and

β = α + a, where a is an integer parameter [Fraenkel 1982]. Also games on
more piles often depend on irrational numbers, such as the multipile Wythoff
game. This is also the case for the Raleigh game.

Here we were interested in investigating whether there is a game whose strategy
depends on distinct rational numbers. Since the sequences of P-positions of a
game split Z≥1, this leads naturally to a question that has been solved for the
integers, solved for the irrationals, but is wide open for the rationals! This fact
may explain, in part, why the move rules for the Rat game are more complicated
than those where the strategy depends on irrationals.

Since the game we constructed here depends on rational numbers, it is appro-
priately dubbed the Rat game. The Mouse game is a small Rat game with only 2
piles. This is as far as etymology is concerned.

The m-Fat Rat game is played on an arbitrary finite number of piles. Let
0 < α1 ≤ · · · ≤ αm , γ1, . . . , γm be reals, and suppose that the m ≥ 2 Beatty
sequences

bnαi + γic, i = 1, . . . ,m, (2)

split Z≥1. If the moduli αi are all integers (so bnαi+γic= nαi+bγic) and m≥ 2,
then αm = αm−1. A short “proof from the Book”, due to Mirsky, D. Newman,
Davenport and Rado, involving a generating function and a primitive (complex)
root of unity proves this. See [Erdős 1952]. First elementary proofs were given
in [Berger, Felzenbaum and Fraenkel 1986a; Simpson 1986; Lewis 1996]. The
essence of the elementary proof was expounded in [Zeilberger 2001]. For finite
splittings of the integers with irrational moduli there is the well-known result
that if α, β are positive irrationals satisfying

α−1
+β−1

= 1, (3)

then the sequences bnαc and bnβc (n = 1, 2, . . .) split Z≥1. For a “proof from
the Book”, see [Fraenkel 1982]. Thus also b2nαc, b(2n − 1)αc, bnβc, where
n = 1, 2, . . . , is a splitting. This is a simple example of the composition of the
integer splitting 2n, 2n− 1 with an irrational splitting. In fact, the composition
of one or two integer moduli splittings with one or both of any irrational moduli
α, β respectively satisfying (3) is also a splitting.

So far we have seen that any splitting of the positive integers by m sequences
that are multiples of moduli, contains at least two sequences with identical moduli
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(m ≥ 2 for integer moduli, m ≥ 3 for irrational moduli). But a counterexample
for the case when the αk are rational was constructed in [Fraenkel 1973]:⌊2m

− 1
2m−k n

⌋
− 2k−1

+ 1, k = 1, . . . ,m, n ≥ 1,

which splits the positive integers for every m ∈ Z≥2. In fact, the following was
conjectured there:

Conjecture 1. If 0< α1 < · · ·< αm are any real numbers and m ≥ 3, then the
system (2) splits Z≥1 if and only if

αk =
2m
− 1

2m−k for k = 1, . . . ,m.

In other words, the only disjoint covering system with distinct moduli is
conjectured to have this form. Some special cases were proved in [Fraenkel
1973]. See also [Erdős and Graham 1980, Section 1] and [Berger, Felzenbaum and
Fraenkel 1986b]. The most substantial progress towards settling the conjecture
was made by Graham [1973], who showed that if the moduli are irrational and
m ≥ 3, then again αi = α j for some i 6= j . He did this by proving that any finite
irrational splitting of the integers by at least 3 sequences is a composition as
stated above, so the result follows from the integer case. However, the remaining
rational case appears to be rather stubborn.

Morikawa [1982/83; 1985b] (and in a number of additional papers) investigated
splittings of Z≥1 by rational Beatty sequences and proved the conjecture for m=3.
This case was proved independently in [Tijdeman 1996]. Morikawa [1985a]
gave necessary and sufficient conditions for two rational Beatty sequences to be
disjoint. Simpson [2004] simplified this proof and dubbed it “Japanese remainder
theorem” in honor of Morikawa. He also gave there a generating function method
for the splitting of Z≥1 by rational Beatty sequences, similar to that of Mirsky,
D. Newman, Davenport and Rado for expressing the splitting of Z≥1 by integer
Beatty sequences. Simpson [1991] proved that the conjecture holds if α1 ≤ 3/2.
Altman, Gaujal and Hordijk [Altman et al. 2000] proved it for m = 4, using
the notion of balanced words. Using this method, Tijdeman [2000a; 2000b]
established it for m = 5 and 6. Using the same method, Barát and Varjú [2003]
extended it to m = 7. The conjecture was generalized by Graham and O’Bryant
[2005] to exact t-fold coverings, and proved several special cases of it using
Fourier methods. For further developments see [Vuillon 2003; Paquin and Vuillon
2007].

It is of some interest to note that the conjecture has applications in the theory
of scheduling and just-in-time sequencing. See, e.g., [Kubiak 2003; Brauner and
Jost 2008; Brauner and Crama 2004]. These applications, in turn, precipitated
proofs of special cases of the conjecture.



THE RAT GAME AND THE MOUSE GAME 111

But despite all these really nice results, the conjecture is still open. Ron
Graham summed it all up in a slight rephrasing of Piet Hein’s saying:

A problem worthy of attack,
proves its worth by fighting back.

Summarizing, the 3-fold motivation for this work: (i) a games approach might
help to settle this conjecture, and (ii) find a take-away game whose winning
strategy depends on rational numbers, and (iii) find another analyzable nonNim
take-away game played on more than 2 piles.

We remark finally that it may be of interest to characterize infinite disjoint
covering systems with rational moduli. For the case of integer moduli (arithmetic
sequences), see [Barát and Varjú 2005; Z.-W. Sun 2005].
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