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The Erdős–Szekeres Theorem:

Upper Bounds and Related Results

GÉZA TÓTH AND PAVEL VALTR

Abstract. Let ES(n) denote the least integer such that among any ES(n)
points in general position in the plane there are always n in convex po-
sition. In 1935, P. Erdős and G. Szekeres showed that ES(n) exists and

ES(n) ≤
`

2n−4

n−2

´

+ 1. Six decades later, the upper bound was slightly im-

proved by Chung and Graham, a few months later it was further improved
by Kleitman and Pachter, and another few months later it was further im-
proved by the present authors. Here we review the original proof of Erdős
and Szekeres, the improvements, and finally we combine the methods of
the first and third improvements to obtain yet another tiny improvement.

We also briefly review some of the numerous results and problems related
to the Erdős–Szekeres theorem.

1. Introduction

In 1933, Esther Klein raised the following question. Is it true that for every

n there is a least number— which we will denote by ES(n) — such that among

any ES(n) points in general position in the plane there are always n in convex

position?

This question was answered in the affirmative in a classical paper of Erdős and

Szekeres [1935]. In fact, they showed (see also [Erdős and Szekeres 1960/1961])

that

2n−2 + 1 ≤ ES(n) ≤
(

2n − 4

n − 2

)

+ 1.

The lower bound, 2n−2 +1, is sharp for n = 2, 3, 4, 5 and has been conjectured

to be sharp for all n. However, the upper bound,
(

2n − 4

n − 2

)

+ 1 ≈ c
4n

√
n

,
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558 GÉZA TÓTH AND PAVEL VALTR

was not improved for 60 years. Recently, Chung and Graham [1998] managed

to improve it by 1. Shortly after, Kleitman and Pachter [1998] showed that

ES(n) ≤
(

2n−4
n−2

)

+ 7 − 2n. A few months later the present authors [Tóth and

Valtr 1998] proved that ES(n) ≤
(

2n−5
n−2

)

+ 2, which is a further improvement,

roughly by a factor of 2.

In this note we review the original proof of Erdős and Szekeres, all three

improvements, and then we combine the ideas of the first and third improvements

to obtain the following result, which is a further improvement by 1.

Theorem 1. For n ≥ 5, any set of
(

2n−5
n−2

)

+ 1 points in general position in the

plane contains n points in convex position. That is, ES(n) ≤
(

2n−5
n−2

)

+ 1.

Next section contains a brief review of some of the numerous results and problems

related to the Erdős–Szekeres theorem.

2. Some Related Results

Many researchers have been motivated by the Erdős–Szekeres theorem. Here

we mention only a small part of the research related to the Erdős–Szekeres

theorem. See [Morris and Soltan 2000; Bárány and Károlyi 2001; Braß et al.

2005] for the latest survey.

Empty polygons. A famous open problem related to the Erdős–Szekeres the-

orem is the empty–hexagon problem. Let P be a finite set of points in general

position in the plane. A subset Q ⊂ P, |Q| = n, is called an n-hole (or an empty

convex n-gon) in P , if it is in convex position and its convex hull contains no

further points of P . Let g(n) be the smallest positive integer such that any P ,

|P | ≥ g(n), in general position contains an n-hole. It is easy to see that g(3) = 3,

g(4) = 5. Harborth [Harborth 1978] proved g(5) = 10. Horton [Horton 1983]

gave a construction showing that no finite g(7) exists.

The empty–hexagon problem: Is there a finite g(6)?

Using a computer search, Overmars [Overmars 2003] found a set of 29 points

in general position having no empty hexagon. Thus, if g(6) exists then g(6) ≥ 30.

Let Xk(P ) be the number of empty k-gons in an n-element point set P in

general position, for k ≥ 0; as special cases X0(P ) = 1, X1(P ) = n, X2(P ) =
(

n
2

)

,

since every subset of P of size up to 2 is considered an empty polygon. There

are several equalities and inequalities involving these parameters. Ahrens et al.

[1999] proved general results giving the following interesting equalities on the

numbers Xk(P ):

∑

k≥0

(−1)kXk(P ) = 0,
∑

k≥1

(−1)kkXk(P ) = −|P ∩ Int(P )|,
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where |P ∩ Int(P )| is the number of interior points of P . Pinchasi et al. [≥
2005] proved these two equalities by a simple argument (the “continuous motion”

method) and gave also some other equalities and inequalities, such as

X4(P ) ≥ X3(P ) − 1
2n2 − O(n), X5(P ) ≥ X3(P ) − n2 − O(n).

Let Yk(n) = min|P |=n Xk(P ) be the minimum number of empty convex k-gons

in a set of n points. By the construction of Horton, Yk(n) = 0 for k ≥ 7. For

k ≤ 6, the best known bounds are

n2 − 5n + 10 ≤ Y3(n) ≤ 1.6195...n2 + o(n2),
(

n − 3

2

)

+ 6 ≤ Y4(n) ≤ 1.9396...n2 + o(n2),

3
⌊ n

12

⌋

≤ Y5(n) ≤ 1.0206...n2 + o(n2),

0 ≤ Y6(n) ≤ 0.2005...n2 + o(n2).

The lower bounds are given in [Dehnhardt 1987], the upper bounds in [Bárány

and Valtr 2004].

Convex bodies. Several authors [Bisztriczky and Fejes Tóth 1989; 1990; Pach

and Tóth 1998; Tóth 2000] have extended the Erdős–Szekeres theorem to families

of pairwise disjoint convex sets, instead of points.

A family of pairwise disjoint convex sets is said to be in convex position if

none of its members is contained in the convex hull of the union of the others.

It is easy to construct an arbitrarily large family of pairwise disjoint convex

sets such that no three or more of them are in convex position. So, without

any additional condition on the family, we cannot generalize the Erdős–Szekeres

theorem.

For points we had the condition “no three points are on a line”, that is, “any

three points are in convex position”. Therefore, the most natural condition to

try for families of convex sets is “any three convex sets are in convex position”.

Bisztriczky and Fejes Tóth [1989] proved that there exists a function P3(n)

such that if a family F of pairwise disjoint convex sets has more than P3(n)

members, and any three members of F are in convex position, then F has n

members in convex position. In [Bisztriczky and Fejes Tóth 1990] they showed

that this statement is true with a function P3(n), triply exponential in n. Pach

and Tóth [1998] further improved the upper bound on P3(n) to a simply expo-

nential function. The best known lower bound for P3(n) is the classical lower

bound for the original Erdős–Szekeres theorem, 2n−2 ≤ P3(n).

In the case of points, if we have a stronger condition that every four points

are in convex position, then the problem becomes uninteresting; in this case all

points are in convex position.

In case of convex sets, the condition “every four are in convex position” does

not make the problem uninteresting, but it still turns out to be a rather strong
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condition. Let F be a family of pairwise disjoint convex sets. If any k members

of F are in convex position, then we say that F satisfies property Pk. If no n

members of F are in convex position, then we say that F satisfies property Pn.

Property Pn
k means that both Pk and Pn are satisfied. Using these notions, the

above cited result of Pach and Tóth states that if a family F satisfies property

Pn
3 , then |F| ≤

(

2n−4
n−2

)2
.

Bisztriczky and Fejes Tóth [1990] raised the following more general question.

What is the maximum size Pk(n) of a family F satisfying property Pn
k ? Some

of their bounds were later improved in [Pach and Tóth 1998] and [Tóth 2000].

The best known bounds are

2n−2 ≤ P3(n) ≤
(

2n − 4

n − 2

)2

,

2

⌊

n + 1

4

⌋2

≤ P4(n) ≤ n3,

n − 1 +

⌊

n − 1

k − 2

⌋

≤ P5(n) ≤ 6n − 12,

n − 1 +

⌊

n − 1

k − 2

⌋

≤ Pk(n) ≤ n +
1

k − 5
n for k ≥ 6.

See [Erdős and Szekeres 1960/1961] for the first line, [Pach and Tóth 1998] for

the first and second, and [Bisztriczky and Fejes Tóth 1990; Tóth 2000] for the

last two.

Pach and Tóth [2000] investigated the case when the sets are not necessarily

disjoint.

The partitioned version. It follows from the exponential upper bound on the

number ES(n) by a simple counting argument that for a given n every “huge”

set of points in general position in the plane contains “many” n-point subsets in

convex position. However, geometric arguments yield much stronger results.

A convex n-clustering is defined as a finite planar point set in general position

which can be partitioned into n finite sets X1, X2, . . . , Xn of equal size such that

x1x2 . . . xn is a convex n-gon for each choice x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn.

The positive fraction Erdős–Szekeres theorem [Bárány and Valtr 1998] states

that for any n any sufficiently large finite set X of points in general position

contains a convex n-clustering of size ≥ εn |X|, where εn > 0 is independent

of X. Pór [2003] and Pór and Valtr [2002], answering a question of Bárány,

proved a partitioned version of the Erdős–Szekeres theorem: for any n there are

two positive constants cn, c′n such that any finite X in general position can be

partitioned into at most cn convex n-clusterings and a remaining set of at most

c′n points. The optimal constants 1/εn, c′n are exponential in n, while cn is at

least exponential in n and at most of order nO(n2). For details see [Pór and Valtr

2002].
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The positive fraction Erdős–Szekeres theorem for collections of convex sets

can be found in [Pach and Solymosi 1998], and the partitioned Erdős–Szekeres

theorem for collections of convex sets can be found in [Pór and Valtr ≥ 2005].

3. The Upper Bound of Erdős and Szekeres

Definition. The points (x1, y1), (x2, y2), . . . , (xn, yn), x1 < x2 < . . . < xn, form

an n-cap if
y2 − y1

x2 − x1
>

y3 − y2

x3 − x2
> . . . >

yn − yn−1

xn − xn−1
.

Similarly, they form an n-cup if

y2 − y1

x2 − x1
<

y3 − y2

x3 − x2
< . . . <

yn − yn−1

xn − xn−1
.

Theorem 2 [Erdős and Szekeres 1935]. Let f(n,m) be the least integer such

that any set of f(n,m) points in general position in the plane contains either an

n-cap or an m-cup. Then

f(n,m) =

(

n + m − 4

n − 2

)

+ 1.

The following observation has a key role in the proof of the Erdős–Szekeres

theorem.

Observation 1. If a point v is the rightmost point of a cap and also the leftmost

point of a cup then the cap or the cup can be extended to a larger cap or cup,

respectively.

Proof. Let u be the second point of the cap from the right, and let w be the

second point of the cup from the left. Now, depending on the angle uvw, either

the cap can be extended by w, or the cup can be extended by u. See Figure 1. ˜

u

v

w

u

v

w

Figure 1. Either the cap can or the cup can be extended.

Proof that f(n,m) ≤
(

n+m−4
n−2

)

+ 1. We use double induction on n and m.

The statement trivially holds for n = 2 and any m, and for m = 2 and any

n. Let n,m ≥ 3 and suppose that the statement holds for (n,m−1) and for

(n−1,m). Take
(

n+m−4
n−2

)

+ 1 points in general position. By induction we know

that any subset of at least
(

n+m−5
n−3

)

+ 1 points contains either an (n−1)-cap or

an m-cup. In the latter case we are done, so we can assume that any subset of at

least
(

n+m−5
n−3

)

+1 points contains an (n−1)-cap. Take an (n−1)-cap and remove
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its right endpoint from the point set. Since we still have at least
(

n+m−5
n−3

)

+ 1

points, we have another (n−1)-cap, remove its right endpoint again, and continue

until we have
(

n+m−5
n−3

)

points left. We have removed
(

n+m−4
n−2

)

+ 1 −
(

n+m−5
n−3

)

=
(

n+m−5
m−3

)

+ 1 points, each of them a right endpoint of some (n−1)-cap. But the

set of these points, by induction, contains either an n-cap or an (m−)1-cup. In

the first case we are done. In the second case we have an (m−1)-cup whose left

endpoint v is the right endpoint of some (n−1)-cap. Observation 1 then finishes

the induction step. ˜

Proof of the Erdős–Szekeres theorem. Since ES(n) ≤ f(n, n), we have

ES(n) ≤
(

2n−4
n−2

)

+ 1. ˜

Erdős and Szekeres [1935] also proved that the bound f(n,m) ≤
(

n+m−4
n−2

)

+ 1

is tight for any n,m. But it does not imply that the bound for ES(n) is tight

as well. The best known lower bound is 2n−2 + 1 ≤ ES(n) [Erdős and Szekeres

1960/1961] and in fact it is conjectured to be tight.

4. Three Improvements

Theorem 3 [Chung and Graham 1998]. For n ≥ 4,

ES(n) ≤
(

2n − 4

n − 2

)

.

Proof. Take
(

2n−4
n−2

)

points in general position. Let A be the set of those points

which are right endpoints of some (n−1)-cap. Just as above, we can argue that

|A| ≥
(

2n−4
n−2

)

−
(

2n−5
n−3

)

=
(

2n−5
n−3

)

. If |A| >
(

2n−5
n−3

)

, then A contains either an n-cap

or an (n−1)-cup. In the first case we are done immediately, in the second we have

an (n−1)-cup whose left endpoint is also a right endpoint of some (n−1)-cap

and we are done as in the previous proof. So we can assume that |A| =
(

2n−5
n−3

)

.

Let B be the set of the other points, clearly |B| =
(

2n−5
n−3

)

. Let b ∈ B. The set

{b}∪A has size
(

2n−5
n−3

)

+1 so again it contains either an n-cap or an (n−1)-cup.

In the case of n-cap we are done, so we can assume that it contains an (n−1)-cup

for any choice of b. If the left endpoint of this (n−1)-cup is an element of A,

we are done by Observation 1, since we have an (n−1)-cup whose left endpoint

is also a right endpoint of some (n−1)-cap. So, the left endpoint of this (n−1)-

cup is b. Therefore, any b ∈ B is the left endpoint of an (n−1)-cup whose right

endpoint is in A. We can argue analogously, that any a ∈ A is the right endpoint

of an (n−1)-cap whose left endpoint is in B. Let S be the set of all segments

ab, where a ∈ A, b ∈ B, and there is an (n−1)-cup or (n−1)-cap whose right

endpoint is a and left endpoint is b. Let ab be the element of S with the largest

slope. Suppose that ab represents an (n−1)-cup, the other case is analogous.

We know that there is an (n−1)-cap whose right endpoint is a and left endpoint

is b′. Now it is easy to see that either the (n−1)-cup and b′, or the (n−1)-cap

and b determine a convex n-gon. This concludes the proof; see Figure 2. ˜
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b

b′
a

Figure 2. Either b′ can be added to the cup, or b to the cap.

Theorem 4 [Kleitman and Pachter 1998]. For n ≥ 4,

ES(n) ≤
(

2n − 4

n − 2

)

− 2n + 7.

Proof. We say that a point set is vertical if its two leftmost points have the

same x-coordinate. Observe, that any point set can be made vertical by an

appropriate rotation. We define caps and cups for vertical sets just like for any

set of points, the only difference is that now the vertical edge determined by

the two leftmost points is allowed to be the leftmost edge of a cup or a cap; see

Figure 3.

Let fv(n,m) be the least integer such that any vertical set of fv(n,m) points

in general position contains either an n-cap or an m-cup. Take fv(n,m)−1 points

in a vertical point set with no n-caps and m-cups. Let a and b be the two leftmost

points such that a is above b. Let A be the set of those points which are right

endpoints of some (n−1)-cap, and B be the set of the other points. Since the two

leftmost points do not belong to A, B is a vertical point set. If |B| ≥ fv(n−1,m)

then B has an (n−1)-cap or an m-cup. The first case contradicts the definition

of A, the second case contradicts the assumption that we do not have an m-cup.

So, |B| ≤ fv(n−1,m) − 1. Now consider the set A′ = A ∪ {b} and suppose that

|A′| ≥ f(n,m−1). Then A′ has an n-cap or an (m−1)-cup. The first case is a

contradiction immediately, in the second case consider the left endpoint of that

(m−1)-cup. If it is b, then it can be extended to an m-cup by a, a contradiction.

If it is in A, then the usual argument works, we have an (n−1)-cup whose left

endpoint is also a right endpoint of some (n−1)-cap and one of them can be

extended by Observation 1. So |A| = |A′| − 1 ≤ f(n,m−1) − 2. Combining the

two inequalities we get that

fv(n,m) ≤ fv(n−1,m) + f(n,m−1) − 2,
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and an analogous argument shows that

fv(n,m) ≤ fv(n,m−1) + f(n−1,m) − 2.

Using the known values of f(n,m), and that fv(n, 3) = fv(3, n) = n, we get that

fv(n,m) ≤
(

n+m−4
n−2

)

+ 7 − n − m, and the result follows. In fact, the inequality

obtained for fv(n,m) is sharp [Kleitman and Pachter 1998]. ˜

b

a

Figure 3. A vertical point set with a 5-cap.

Theorem 5 [Tóth and Valtr 1998]. For n ≥ 3,

ES(n) ≤
(

2n − 5

n − 2

)

+ 2.

Proof. Take
(

2n−5
n−3

)

points in general position. Suppose that the set P does

not contain n points in convex position. Let x be a vertex of the convex hull

of P . Let y be a point outside the convex hull of P such that none of the lines

determined by the points of P \ {x} intersects the segment xy. Finally, let ` be

a line through y which avoids the convex hull of P .

Consider a projective transformation T which maps the line ` to the line at

infinity, and maps the segment xy to the vertical half-line v−(x′), emanating

downwards from x′ = T (x). We get a point set P ′ = T (P ) from P . Since `

avoided the convex hull of P , the transformation T does not change convexity

on the points of P , that is, any subset of P is in convex position if and only

if the corresponding points of P ′ are in convex position. So the assumption

holds also for P ′, no n points of P ′ are in convex position. By the choice of the

point y, none of the lines determined by the points of P ′ \{x′} intersects v−(x′).

Therefore, any m-cap in the set Q′ = P ′ \{x′} can be extended by x′ to a convex

(m + 1)-gon.

Since no n points of P ′ are in convex position, Q′ cannot contain any n-cup

or (n−1)-cap. Therefore, by the Lemma,

|Q′| ≤ f(n−1, n) − 1 =

(

2n − 5

n − 2

)

, |P | ≤
(

2n − 5

n − 2

)

+ 1,

and the theorem follows. ˜
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x′

Figure 4. Any (n−1)-cap can be extended by x′ to a convex n-gon.

5. A Combination of Two Methods

Proof of Theorem 1. Suppose that the set P does not contain n points in

convex position and |P | =
(

2n−5
n−2

)

+ 1. Let x be a vertex of the convex hull of P

and y be a point outside the convex hull of P so close to x that none of the lines

determined by the points of P \ {x} intersects the segment xy. Finally, let ` be

a line through y which avoids the convex hull of P .

Consider a projective transformation T which maps the line ` to the line at

infinity, and maps the segment xy to the vertical half-line v−(x′), emanating

downwards from x′ = T (x). We get a point set P ′ from P . Just like in the

previous proof, T does not change convexity on the points of P . Let P ′′ =

P ′ \ {x′}. By the assumption, P ′′ does not contain any (n−1)-cap or n-cup.

Let A be the set of those points of P ′′ which are right endpoints of some

(n−2)-cap, and let B = P ′′ \ A. If |A| >
(

2n−6
n−3

)

then A contains either an

(n−1)-cap or an (n−1)-cup. The first case contradicts the assumption, in the

second case we have an (n−1)-cup whose left endpoint is also a right endpoint

of some (n−2)-cap, so, either the (n−1)-cup or the (n−2)-cap can be extended

by one point and we get a contradiction. So, |A| ≤
(

2n−6
n−3

)

. If |B| >
(

2n−6
n−2

)

,

then B contains either an (n−2)-cap or an n-cup. The first case contradicts the

definition of A, since we find a right endpoint of some (n−2)-cap in B, the second

case contradicts the assumption. So |B| ≤
(

2n−6
n−2

)

. But then |P ′′| = |A| + |B| ≤
(

2n−6
n−3

)

+
(

2n−6
n−2

)

=
(

2n−5
n−2

)

= |P ′′|, therefore, |A| =
(

2n−6
n−3

)

and |B| =
(

2n−6
n−2

)

.

Let b ∈ B. The set {b} ∪ A has size
(

2n−6
n−3

)

+ 1 so again it contains either an

(n−1)-cap or an (n−1)-cup. In the case of (n−1)-cap we are done, so we can

assume that it is an (n−1)-cup for any choice of b. If the left endpoint of this

(n−1)-cup is an element of A, we have an (n−1)-cup whose left endpoint is also

a right endpoint of some (n−2)-cap, so, either the (n−1)-cup or the (n−2)-cap

can be extended by one point and we get a contradiction again. Hence the left

endpoint of the (n−1)-cup is b. Therefore, any b ∈ B is the left endpoint of an
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u1

u2
u3

b=v1

v2

v3

v4

a=v5=u4

x′

Figure 5. x′, u1, u2, u3, v1, v2 determine a convex hexagon.

(n−1)-cup whose right endpoint is in A. We can argue analogously, considering

the sets {a} ∪ B, that any a ∈ A is the right endpoint of an (n−2)-cap whose

left endpoint is in B.

Let S be the set of all segments ab, where a ∈ A, b ∈ B, and there is ei-

ther an (n−1)-cup or (n−2)-cap whose right endpoint is a and left endpoint

is b. Let ab be the element of S with the largest slope. Suppose that ab

represents an (n−1)-cup. The argument in the other case is analogous. Let

b = v1, v2, . . . , vn−1 = a be the points of the (n−1)-cup from left to right. We

know that there is also an (n−2)-cap whose right endpoint is a and left end-

point in B. Let u1, u2, . . . , un−2 = a be its points from left to right. If un−3

lies above the line v1v2, then uj , v1, v2, . . . , vn−1 determine a convex n-gon and

we are done. Otherwise x′, u1, u2, . . . , un−3, v1, v2 determine a convex n-gon; see

Figure 5. This concludes the proof. ˜
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3–4 (1960/1961), 53–62.

[Harborth 1978] H. Harborth, “Konvexe Fünfecke in ebenen Punktmengen”, Elem.

Math. 33:5 (1978), 116–118.

[Horton 1983] J. D. Horton, “Sets with no empty convex 7-gons”, Canad. Math. Bull.

26:4 (1983), 482–484.

[Kleitman and Pachter 1998] D. Kleitman and L. Pachter, “Finding convex sets among
points in the plane”, Discrete Comput. Geom. 19:3, Special Issue (1998), 405–410.

[Morris and Soltan 2000] W. Morris and V. Soltan, “The Erdős–Szekeres problem on
points in convex position—a survey”, Bull. Amer. Math. Soc. (N.S.) 37:4 (2000),
437–458.

[Overmars 2003] M. Overmars, “Finding sets of points without empty convex 6-gons”,
Discrete Comput. Geom. 29:1 (2003), 153–158.

[Pach and Solymosi 1998] J. Pach and J. Solymosi, “Canonical theorems for convex
sets”, Discrete Comput. Geom. 19:3 (1998), 427–435.
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Discrete Comput. Geom. 19:3, Special Issue (1998), 457–459.
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