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Abstract. We give an introductory overview of the theory of tight closure,
which has recently played a primary role among characteristic-p methods.
We shall see that such methods can be used even when the ring contains a
field of characteristic 0.
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Introduction

The theory of tight closure has recently played a primary role among com-

mutative algebraic methods in characteristic p. We shall see that such methods

can be used even when the ring contains a field of characteristic 0.
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Unless otherwise specified, the rings that we consider here will be Noetherian

rings R containing a field. Frequently, we restrict, for simplicity, to the case

of domains finitely generated over a field K. The theory of tight closure exists

in much greater generality. For the development of the larger theory and its

applications, and for discussion of related topics such as the existence of big

Cohen–Macaulay algebras, we refer the reader to the joint works by Hochster

and Huneke listed in the bibliography, to [Hochster 1994a; 1994b; 1996], to the

expository accounts [Bruns 1996; Huneke 1996; 1998], and to the appendix to

this paper by Graham Leuschke.

Here, in reverse order, are several of the most important reasons for studying

tight closure theory, which gives a closure operation on ideals and on submodules.

We focus mostly on the case of ideals here, although there is some discussion of

modules. We shall elaborate on the themes brought forth in the list below in the

sequel.

11. Tight closure can be used to shorten difficult proofs of seemingly unrelated

results. The results turn out to be related after all. Often, the new results

are stronger than the original results.

10. Tight closure provides algebraic proofs of several results that can otherwise

be proved only in equal characteristic 0, and whose original proofs depended

on analytic techniques.

9. In particular, tight closure can be used to prove the Briançon–Skoda theorem

on integral closures of ideals in regular rings.

8. Likewise, tight closure can be used to prove that rings of invariants of linearly

reductive algebraic groups acting on regular rings are Cohen–Macaulay.

7. Tight closure can be used to prove several of the local homological conjectures.

6. Tight closure can be used to “control” certain cohomology modules: in par-

ticular, one finds that the Jacobian ideal kills them.

5. Tight closure implies several vanishing theorems that are very difficult from

any other point of view.

4. Tight closure controls the behavior of ideals when they are expanded to a

module-finite extension ring and then contracted back to the original ring.

3. Tight closure controls the behavior of certain colon ideals involving systems

of parameters.

2. Tight closure provides a method of compensating for the failure of ambient

rings to be regular.

1. If a ring is already regular, the tight closure is very small: it coincides with

the ideal (or submodule). This gives an extraordinarily useful test for when

an element is in an ideal in regular rings.

One way of thinking about many closure operations is to view them as arising

from necessary conditions for an element to be in an ideal. If the condition

fails, the element is not in the ideal. If the condition is not both necessary and
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sufficient, then when it holds, the element might be in the ideal, but it may only

be in some larger ideal, which we think of as a kind of closure.

Tight closure in positive characteristic can be thought of as arising from such

a necessary but not sufficient condition for ideal membership. One of the reasons

that it is so useful for proving theorems is that in some rings, the condition is

both necessary and sufficient. In particular, that is true in regular rings. In

consequence, many theorems can be proved about regular rings that are rather

surprising. They have the following nature: one can see that in a regular ring a

certain element is “almost” in an ideal. Tight closure permits one to show that

the element actually is in the ideal. This technique works like magic on several

major results that seemed very difficult before tight closure came along.

One has to go to some considerable trouble to get a similar theory working in

rings that contain the rationals, but this has been done, and the theory works

extremely well for “nice” Noetherian rings like the ones that come up in algebraic

and analytic geometry.

It is still a mystery how to construct a similar theory for rings that do not

contain a field. This is not a matter of thinking about anything pathological.

Many conjectures could be resolved if one had a good theory for domains finitely

generated as algebras over the integers.

Before proceeding to talk about tight closure, we give some examples of nec-

essary and/or sufficient conditions for membership in an ideal. The necessary

conditions lead to a kind of closure.

(1) A necessary condition for r ∈ R to be in the ideal I is that the image of r

be in IK for every homomorphism of R to a field K. This is not sufficient: the

elements that satisfy the condition are precisely the elements with a power in I,

the radical of I.

(2) A necessary condition for r ∈ R to be in the ideal I is that the image of

r be in IV for every homomorphism of R to a valuation ring V . This is not

sufficient: the elements that satisfy the condition are precisely the elements in I,

the integral closure of I. If R is Noetherian, one gets the same integral closure

if one only considers Noetherian discrete valuation rings V . There are many

alternative definitions of integral closure.

(3) If R has positive prime characteristic p let Se denote R viewed as an R-

algebra via the e-th iteration F e of the Frobenius endomorphism F (thus, Se =

R, but the structural homomorphism R → Se = R sends r to rpe

). A necessary

condition that r ∈ I is that for some integer e, rpe

∈ ISe. Note that when Se is

identified with R, ISe becomes the ideal generated by all elements ipe

for i ∈ I.

This ideal is denoted I [pe]. This condition is not sufficient for membership in I.

The corresponding closure operation is the Frobenius closure IF of I: it consists

of all elements r ∈ R such that rpe

∈ I [pe] for some nonnegative integer e. (Once
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this holds for once choice of e, it holds for all larger choices.) For example, in

K[x, y, z] = K[X, Y, Z]/(X3 +Y 3 +Z3),

if K has characteristic 2 (quite explicitly, if K = Z2 = Z/2Z) then with I =

(x, y), we have z2 ∈ IF − I. In fact, (z2)2 ∈ I [2] = (x2, y2) here, since z4 =

z3z = −(x3 +y3)z ∈ (x2, y2).

Finally, here is a test for ideal membership that is sufficient but not necessary.

It was used in the first proof of the Briançon–Skoda theorem, and so we mention

it, although easier proofs by analytic methods are available now.

(4) Skoda’s analytic criterion. Let Ω be a pseudoconvex open set in C
n

and φ a plurisubharmonic function1 on Ω. Let f and g1, . . . , gk be holomorphic

functions on Ω. Let γ = (|g1|
2 + · · ·+ |gk|

2)1/2. Let X be the set of common

zeros of the gj . Let d = max{n, k−1}. Let λ denote Lebesgue measure on C
n.

Skoda’s criterion asserts that if either
∫

Ω−X

|f |2

γ2αd+2
e−φ dλ < +∞,

for some real α > 1, or
∫

Ω−X

|f |2

γ2d

(
1+∆ log(γ)

)
e−φ dλ < +∞,

then there exist h1, . . . , hk holomorphic on Ω such that f =
∑k

j=1 hjgj. Hilbert’s

Nullstellensatz states that if f vanishes at the common zeros of the gj then

f ∈ Rad I where I = (g1, . . . , gk). The finiteness of any of the integrals above

conveys the stronger information that, in some sense, f is “small” whenever

all the gj are “small” (or the integrand will be too “large” for the integral to

converge), and we get the stronger conclusion that g ∈ I.

1. Reasons for Thinking About Tight Closure

We give here five results valid in any characteristic (i.e., over any field) that

can be proved using tight closure theory. The tight closure proofs are remarkably

simple, at least in the main cases. The terminology used in the following closely

related theorems is discussed briefly after their statements.

Theorem 1.1 (Hochster and Roberts). Let S be a regular ring that is an

algebra over the field K, and let G be a linearly reductive algebraic group over

K acting on S. Then the ring of invariants R = SG is a Cohen–Macaulay ring .

1We won’t explain these terms from complex analysis here: the definitions are not so
critical for us, because in the application to the Briançon–Skoda theorem, which we discuss
later, we work in the ring of germs of holomorphic functions at, say, the origin in complex n-
space, C

n (∼= convergent power series C{z1, . . . , zn}) — we can pass to a smaller, pseudoconvex
neighborhood; likewise, φ becomes unimportant.
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Theorem 1.1◦ (Hochster and Huneke). If R is a direct summand (as an

R-module) of a regular ring S containing a field , then R is Cohen–Macaulay .

Theorem 1.1◦ implies Theorem 1.1. Both apply to many examples from classical

invariant theory. Recall that an algebraic group (i.e., a Zariski closed subgroup

of GL(n,K)) is called linearly reductive if every representation is completely

reducible. In characteristic 0, these are the same as the reductive groups and

include finite groups, products of GL(1,K) (algebraic tori), and semi-simple

groups. Over C such a group is the complexification of compact real Lie group.

A key point is that when a linearly reductive algebraic group acts on a K-algebra

S, if SG is the ring of invariants or fixed ring {s ∈ S : g(s) = s for all g ∈ G}

there is a canonical retraction map map S → SG, called the Reynolds operator,

that is SG-linear. Thus, R = SG is a direct summand of S as an R-module.

In particular, if S is a polynomial ring over a field K and G is a linearly

reductive linear algebraic group acting on S1, the vector space of 1-forms of S,

and, hence, all of S (the action should be an appropriate one, i.e., determined

by a K-morphism of G into the automorphisms of the vector space S1), then

the fixed ring SG is a Cohen–Macaulay ring R. What is a Cohen–Macaulay

ring? The issue is local: for a local ring the condition means that some (equiva-

lently, every) system of parameters is a regular sequence. In the graded case the

Cohen–Macaulay condition has the following pleasant interpretation: when R is

represented as a finitely generated module over a graded polynomial subring A ,

R is free over A. This is a very restrictive and useful condition on R, especially

in higher dimension. The Cohen–Macaulay condition is very important in in-

tersection theory. Notice that since moduli spaces are frequently constructed as

quotients of smooth varieties by actions of reductive groups, Theorem 1.1 implies

the Cohen–Macaulay property for many moduli spaces.

Theorem 1.1 was first proved by a complicated reduction to characteristic

p > 0 [Hochster and Roberts 1974]. Boutot [1987] gave a shorter proof for affine

algebras in characteristic 0 using resolution of singularities and the Grauert–

Riemenschneider vanishing theorem. The tight closure proof of Theorem 1.1◦ is

the simplest in many ways.

Theorem 1.2 (Briançon–Skoda Theorem). Let R be a regular ring and I

an ideal of R generated by n elements. Then In ⊆ I.

We gave one characterization of what u ∈ J means earlier. It turns out to be

equivalent to require that there be an equation

uh +j1u
h−1 + · · ·+jh = 0

such that every jt ∈ J t, 1 ≤ t ≤ h. We shall give a third characterization later.

Theorem 1.2 was first proved by analytic techniques; compare (4) on page 184.

See [Skoda and Briançon 1974; Skoda 1972]: in the latter paper the analytic

criteria needed were proved. The first algebraic proofs were given in [Lipman
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and Teissier 1981] (for a very important special case) and [Lipman and Sathaye

1981]. There are several instances in which tight closure can be used to prove

results that were first proved either by analytic techniques or by results like

the Kodaira vanishing theorem and related characteristic 0 vanishing theorems

in algebraic geometry. See [Huneke and Smith 1997] for a discussion of the

connection with the Kodaira vanishing theorem.

Theorem 1.3 (Ein–Lazarsfeld–Smith Comparison Theorem). Let P be

a prime ideal of codimension h in a regular ring . Then P (hn) ⊆ Pn for every

integer n.

This was most unexpected. The original proof, valid in characteristic 0, ulti-

mately depends on resolution of singularities and deep vanishing theorems, as

well as a theory of asymptotic multiplier ideals. See [Ein et al. 2001]. The tight

closure proof in [Hochster and Huneke 2002] permits one to extend the results to

characteristic p as well as recovering the characteristic 0 result. There are other

connections between tight closure theory and the theory of multiplier ideals: see

[Smith 2000; Hara 2001; Hara and Yoshida 2003].

Theorem 1.4 (Hochster and Huneke). Let R be a reduced equidimensional

finitely generated K-algebra, where K is algebraically closed . Let f1, . . . , fh be

elements of R that generate an ideal I of codimension (also called height) h mod

every minimal prime of R. Let J be the Jacobian ideal of R over K. Then J

annihilates the Koszul cohomology H i(f1, . . . , fh;R) for all i < h, and hence the

local cohomology H i
I(R) for i < h.

This result is a consequence of phantom homology theory, test element theory for

tight closure, and the Lipman–Sathaye Jacobian theorem [Lipman and Sathaye

1981], all of which we will describe eventually. If

R ∼= K[x1, . . . , xn]/(f1, . . . , fm)

has codimension r in An
K , then J is the ideal of R generated by the images of

the size r minors of the Jacobian matrix (∂fj/∂xj), and defines the non-smooth

(over K) locus in Spec R. The ideal J ⊆ R turns out to be independent of which

presentation of R one chooses.

Here is a more geometrically flavored corollary.

Corollary 1.5. Let R be a finitely generated graded domain of dimension n+1

over an algebraically closed field K, so that X = Proj(R) is a projective variety

of dimension n over an algebraically closed field K. Let g denote a homogeneous

element of the Jacobian ideal J ⊆ R of degree d (so that g gives a global section

of OX(d) ). Then for 1 ≤ j ≤ n−1, the map Hj(X, OX(t)) → Hj(X, OX(t+d))

induced by multiplication by g is 0.

The reason this follows from Theorem 1.4 is that for j ≥ 1, if we let M =⊕
t∈Z

Hj(X,OX(t)), then M is isomorphic (as an R-module) with H j+1
m (R)



TIGHT CLOSURE THEORY AND CHARACTERISTIC p METHODS 187

which may be viewed as an R-module. We may replace m by the ideal generated

by a homogeneous system of parameters, since the two have the same radical.

Then Theorem 1.4 implies that the Jacobian ideal of R kills M for 1 ≤ j ≤ n−1.

See also Corollary 8.3.

2. The Definition of Tight Closure in Positive Characteristic

One of our guidelines towards a heuristic feeling for when an element u of a

Noetherian ring R should be viewed as “almost” in an ideal I ⊆ R will be this:

if R has a module-finite extension S such that u ∈ IS then u is “almost” in I.

Notice that if R is a normal domain (i.e., integrally closed in its field of

fractions) containing the rational numbers and S is a module-finite extension,

then IS∩R = I, so that for normal rings containing Q we are not allowing any

new elements into the ideal. One can see this as follows. By first killing a minimal

prime ideal of S disjoint from R−{0} we may assume that S is a domain. Let

L → L′ be the corresponding finite algebraic extension of fraction fields, and

suppose it has degree d. Let trL′/L denote field trace. Then
1

d
trL′/L : S → R

gives an R-linear retraction when R is normal. This implies that IS∩R = I for

every ideal I of R. (We only need the invertibility of the single integer d in R

for this argument.)

The situation for normal domains of positive characteristic is very different,

where it is an open question whether the elements that are “almost” in an ideal

in this sense may coincide with the tight closure in good cases. Our definition

of tight closure may seem unrelated to the notion above at first, but there is a

close connection.

For simplicity we start with the case of ideals in Noetherian domains of char-

acteristic p > 0. Recall that in characteristic p the Frobenius endomorphism

F = FR on R maps r to rp, and is a ring endomorphism. When R is reduced, we

denote by R1/pe

the ring obtained by adjoining pe-th roots for all elements of R:

it is isomorphic to R, using the e-th iterate of its Frobenius endomorphism with

the image restricted to R. Recall that in a ring of positive characteristic p, when

q = pe, we denote by I [q] the ideal of R generated by all q-th powers of elements

of I. It is easy to see that this ideal is generated by q-th powers of generators

of I. Notice that it is much smaller, typically, than the ordinary power I q. Iq

is generated by all monomials of degree q in the generators of I, not just q-th

powers of generators.

Definition 2.1. Let R be a Noetherian domain of characteristic p > 0, let I be

an ideal of R, and let u be an ideal of R. We say that u ∈ R is in the tight closure

I∗ of I in R if there exists an element c ∈ R−{0} such that for all sufficiently

large q = pe, we have cuq ∈ I [q].

It is equivalent in the definition above to say “for all q” instead of “for all

sufficiently large q”. We discuss why this condition should be thought of as
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placing u “almost” in I in some sense. Let I = (f1, . . . , fh)R. Note that for

every large q = pe one has

cuq = r1qf
q
1 + · · · rhqf

q
h

and if we take q-th roots we have

c1/qu = r
1/q
1q f1 + · · · r

1/q
hq fh,

an equation that holds in the ring Sq = R[c1/q , r
1/q
iq : 1 ≤ i ≤ h]. S is a module-

finite extension of R. But this is not quite saying that u is in IS: rather, it says

that c1/qu is in IS. But for very large q, for heuristic purposes, one may think

of c1/q as being close to 1: after all, the exponent is approaching 0. Thus, u is

multiplied into ISq in a sequence of module-finite extensions by elements that

are getting closer and closer to being a unit, in a vague heuristic sense. This may

provide some motivation for the idea that elements that are in the tight closure

of an ideal are “almost” in the ideal.

It is ironic that tight closure is an extremely useful technique for proving

theorems about regular rings, because it turns out that in regular rings the tight

closure of any ideal I is simply I itself. In some sense, the reason that tight

closure is so useful in regular rings is that it gives a criterion for being in an

ideal that, on the face of it, is considerably weaker than being in the ideal. We

shall return to this point later.

We may extend the definition to Noetherian rings R of positive prime char-

acteristic p that are not necessarily integral domains in one of two equivalent

ways:

(1) Define u to be in I∗ if the image of u in R/P is in the tight closure of I(R/P )

in R/P for every minimal prime P of R.

(2) Define u to be in I∗ if there is an element c ∈ R and not in any minimal

prime of R such that cuq ∈ I [q] for all q = pe � 0.

3. Basic Properties of Tight Closure and the Briançon–Skoda

Theorem

The following facts about tight closure in a Noetherian ring R of positive

prime characteristic p are reasonably easy to verify from the definition.

(a) For any ideal I of R, (I∗)∗ = I∗.

(b) For any ideals I ⊆ J of R, I∗ ⊆ J∗.

We shall soon need the following characterization of integral closure of ideals in

Noetherian domains.

Fact 3.0. Let R be a Noetherian domain and let J be an ideal . Then u ∈ R

is in J if and only if for some c ∈ R−{0} and every integer positive integer n,

cun ∈ In. It suffices if cun ∈ In for infinitely many values of n.
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Comparing this with the definition of tight closure and using the fact that I [q] ⊆

Iq for all q = pe, we immediately get

(c) For any ideal I of R, I∗ ⊆ I. In particular, I∗ is contained in the radical of

I.

Less obvious is the following theorem that we will prove later.

Theorem 3.1. If R is regular , every ideal of R is tightly closed .

Assuming this fact for a moment, we can prove the following result:

Theorem 3.2 (Tight closure form of the Briançon–Skoda Theorem

in characteristic p). Let I = (f1, . . . , fn)R be an ideal of a regular ring R

of characteristic p > 0. Then In ⊆ I. When R is not necessarily regular , it is

still true that In ⊆ I∗.

Proof. Assuming Theorem 3.1 for the moment, we need only check the final

assertion. It suffices to work modulo each minimal prime of R in turn, so we

may assume that R is a domain. Then u ∈ In implies that for some nonzero c,

cum ∈ (In)m for all m. Restricting m = q = pe we find that cum ∈ Inq ⊆ I [q] for

all q, since a monomial in n elements of degree nq must have a factor in which

one of the elements is raised to the q-th power. �

Why is every ideal in a regular ring tightly closed? We first need the following:

Fact 3.3. If R is regular of positive characteristic p, the Frobenius endomor-

phism is flat .

Proof. The issue is local on R. In the local case it suffices to prove it for the

completion R̂ because R → R̂ is faithfully flat. We have therefore reduced to

considering the case R ∼= K[[x1, . . . , xn]]. The Frobenius map is then isomorphic

with the ring inclusion Kp[[xp
1, . . . , xp

n]] ⊆ K[[x1, . . . , xn]]. Letting Kp = k, we

may factor this map as k[[xp
1, . . . , xp

n]] ⊆ k[[x1, . . . , xn]] ⊆ K[[x1, . . . , xn]]. The

first extension is free on the monomials xh1

1 · · ·xhn
n with 0 ≤ hi < p for all i. The

flatness of the second map (for any field inclusion k ⊆ K) may be seen as follows:

since K is flat (in fact, free) over k, K[x1, . . . , xn] is flat over k[x1, . . . , xn]. This

is preserved when we localize at the maximal ideal generated by the x ’s in the

larger ring and its contraction (also generated by the x ’s) to the smaller ring.

Finally, it is further preserved when we complete both local rings. �

Recall that for an ideal I of R and element u ∈ R, I : u = {r ∈ R : ur ∈ I}.

This may thought of as the annihilator in R of the image of u in R/I.

Fact 3.4. If f : R → S is flat , I ⊆ R and u ∈ R, then IS :S f(u) = (I :R u)S.

To see why, note the exact sequence (I : u)/I → R/I → R/I where the map is

multiplication by u. Applying S⊗R preserves exactness, from which the stated

result follows.
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Corollary 3.5. If R is regular of positive characteristic, I is any ideal , and

u ∈ R, then I [q] : uq = (I : u)[q] for all q = pe.

The point is that since F : R → R is flat, so is its e-th iterate F e. If S denotes

R viewed as an R-algebra via F e then IS = I [pe] when we “remember” that S

is R. With this observation, Corollary 3.5 follows from Fact 3.4.

Proof of Theorem 3.1. We can reduce to the case where R is a domain. If

c 6= 0 and cuq ∈ I [q] for all q = pe, then c ∈
⋂

q I [q] : uq =
⋂

q(I : u)[q] ⊆
⋂

q(I :

u)q. Since the intersection is not 0, we must have that I : u = R, i.e., that

u ∈ R. �

We also mention here the very useful fact that tight closure captures contracted

extensions from module-finite extensions.

Theorem 3.6. Let S be a domain module-finite over R and let I be an ideal of

R. Then IS∩R ⊆ I∗.

Proof. S can be embedded in a finitely generated free R-module. One of the

projection maps back to R will be nonzero on the identity element of S. That

is, there is an R-linear map f : S → R that sends 1 ∈ S to c ∈ R−{0}. If

u ∈ IS ∩R, then uq ∈ I [q]S for all q. Applying f to both sides yields that

cuq ∈ Iq. �

Although we have not yet given the definitions the analogous fact holds for sub-

modules of free modules, and can even be formulated for arbitrary submodules

of arbitrary modules.

4. Direct Summands of Regular Rings are Cohen–Macaulay

Elements x1, . . . , xn in a ring R are called a regular sequence on an R-module

M if (x1, . . . , xn)M 6= M and xi+1 is not a zerodivisor on M/(x1, . . . , xi)M ,

0 ≤ i < n. A sequence of indeterminates in a polynomial or formal power series

ring R, with M = R (or a nonzero free R-module) is an example. We shall make

use of the following fact:

Fact 4.1. Let A be a polynomial ring over a field K, say A = K[x1, . . . , xd] or

let A be a regular local ring in which x1, . . . , xd is a minimal set of generators

of the maximal ideal . Then a finitely generated nonzero A-module M (assumed

graded in the first case) is A-free if and only if x1, . . . , xd is a regular sequence

on M . Thus, a module-finite extension ring R (graded if A is a polynomial ring)

of A is Cohen–Macaulay if and only if x1, . . . , xd is a regular sequence on R.

The following two lemmas make the connection between tight closure and the

Cohen–Macaulay property.

Proposition 4.2. Let S be a module-finite domain extension of the domain R

(torsion-free is sufficient) and let x1, . . . , xd be a regular sequence in R. Suppose

0 ≤ k < d and let I = (x1, . . . , xk)R. Then IS :S xk+1 ⊆ (IS)∗ in S.
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Thus, if every ideal of S is tightly closed , and x1, . . . , xd is a regular sequence

in R, it is a regular sequence in S.

Proof. Because S is a torsion-free R-module there is an an element c of R−{0}

that multiplies S into an R-free submodule G ∼= Rh of S. (This is really all we

need about S.) Suppose that uxk+1 ∈ IS. Raise both sides to the q = pe

power to get uqxq
k+1 ∈ I [q]S. Multiply by c to get (cuq)xq

k+1 ∈ I [q]G. Because

the xj form a regular sequence on G, so do their q-th powers, and we find that

cuq ∈ I [q]S = (IS)[q]. Since this holds for all q = pe, we are done. �

Proposition 4.3. Let R be a domain module-finite over a regular local ring A

or N-graded and module-finite over a polynomial ring A. Suppose that R is a

direct summand of a regular ring S as an R-module. Then R is Cohen–Macaulay

(i .e., A-free).

Proof. Let x1, . . . , xd be as in Fact 4.1. The result comes down to the assertion

that x1, . . . , xd is a regular sequence on R. By Proposition 4.2, it suffices to show

that every ideal of R is tightly closed. But if J is an ideal of R and u ∈ R is in J ∗,

then it is clear that u ∈ (JS)∗ = JS, since S is regular, and so u ∈ JS∩R = J ,

because R is a direct summand of S. �

Pushing this idea a bit further, one gets a full proof of Theorem 1.1. We need

to extend the notion of tight closure to equal characteristic 0, however. This is

tackled in Section 6.

5. The Ein–Lazarsfeld–Smith Comparison Theorem

We give here the characteristic-p proof of Theorem 1.3, and we shall even allow

radical ideals, with h taken to be the largest height of any minimal prime. For a

prime ideal P , P (N), the N -th symbolic power, is the contraction of P NRP to R.

When I is a radical ideal with minimal primes P1, . . . , Pk and W = R−
⋃

j Pj ,

we may define P (N) either as
⋂

j P
(N)
j or as the contraction of IN (W−1R) to R.

Suppose that I 6= (0) is radical ideal. If u ∈ I (hn), then for every q = pe

we can write q = an+ r where a ≥ 0 and 0 ≤ r ≤ n−1 are integers. Then

ua ∈ I(han) and Ihnua ⊆ Ihrua ⊆ I(han+hr) = I(hq). We now come to a key

point: we can show that

I(hq) ⊆ I [q]. (∗)

To see this, note that because the Frobenius endomorphism is flat for regular

rings, I [q] has no associated primes other than the minimal primes of I, and it

suffices to check (∗) after localizing at each minimal prime P of I. But after

localization, I has at most h generators, and so each monomial of degree hq in

these generators is a multiple of the q-th power of at least one of the generators.

This completes the proof of (∗). Taking n-th powers gives that Ihn2

uan ⊆

(I [q])n = (In)[q], and since q ≥ an, we have Ihn2

uq ⊆ (In)[q] for fixed h and n

and all q. Let d be any nonzero element of Ihn2

. The condition that duq ∈ (In)[q]
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for all q says precisely that u is in the tight closure of In in R. But in a regular

ring, every ideal is tightly closed, and so u ∈ In, as required.

6. Extending the Theory to Affine Algebras in Characteristic 0

In this section we discuss briefly how to extend the results of tight closure

theory to finitely generated algebras over a field K of characteristic zero. There

is a good theory with essentially the same properties as in positive characteristic.

See [Hochster and Huneke 1999; Hochster 1996].

Suppose that we have a finitely generated K-algebra R. We may think of

R as having the form K[x1, . . . , xn]/(f1, . . . , fm) for finitely many polynomials

fj . An ideal I ⊆ R can be given by specifying finitely many polynomials gj ∈

T = K[x1, . . . , xn] that generate it, and an element u of R can be specified by

giving a polynomial h that maps to. We can then choose a finitely generated

Z-subalgebra B of K that contains all of the coefficients of the fj , the gj and of

h. We can form a ring RB = B[x1, . . . , xn]/(f1, . . . , fm) and we can consider

the ideal IB of the RB generated by the images of the gj in RB . It turns

out that after localizing B at one nonzero element we can make other pleasant

assumptions: that IB ⊆ RB ⊆ R, that RB and RB/IB are B-free (the lemma of

generic freeness), and that tensoring with K over B converts IB ⊆ RB to I ⊆ R.

Moreover, h has an image in RB ⊆ R that we may identify with u.

We then define u to be in the tight closure of I in R provided that for all

maximal Q in a dense open subset of the maximal spectrum of B, with κ =

B/Q, the image of u in Rκ = κ⊗B RB is in the characteristic-p tight closure of

Iκ = IRκ —this makes sense because B/Q will be a finite field.

This definition turns out to be independent of the choices of B RB , IB , etc.

Here is one very simple example. Let R = K[x, y, z]/(x3+y3+z3) where K is

any field of characteristic 0, e.g., the complex numbers, let I = (x, y) and u be the

image of z2. In this case we may take B = Z, RZ = Z[x, y, z]/(x3 +y3 +z3) and

IZ = (x, y)RZ . Then z2 is in the characteristic 0 tight closure of (x, y)R because

for every prime integer p 6= 3 (these correspond to the maximal ideals of Z, the

image of z2 is in the characteristic-p tight closure of (x, y)(Z/pZ)[x, y, z]/(x3 +

y3+z3). Take c = x, for example. One can check that c(z2)q ∈ (xq, yq)(RZ/pRZ)

for all q = pe. Write 2q = 3k+a, a ∈ {1, 2}, and use that xz2q = ±x(x3+y3)kza.

Each term in x(x3+y3)k has the form x3i+1y3j where 3i+3j = 3k ≥ 2q−2. Since

(3i+1)+3j ≥ 2q−1, at least one of the exponents is ≥ q.

7. Test Elements

In this section we again study the case of rings of characteristic p > 0. Let

R be a Noetherian domain. We shall say that an element c ∈ R−{0} is a test

element if for every ideal I of R, cI∗ ⊆ I. An equivalent condition is that for
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every ideal I and element u of R, u ∈ I∗ if and only if cuq ∈ I [q] for every

q = pe ≥ 1. The reason that this holds is the easily verified fact that if u ∈ I∗,

then uq ⊆ (I [q])∗ for all q. Thus, an element that is known to be a test element

can be used in all tight closure tests. A priori the element used in tight closure

tests for whether u ∈ I∗ in the definition of tight closure can vary with both I

and u. The test elements together with 0 form an ideal called the test ideal.

Test elements are known to exist for domains finitely generated over a field.

Any element d 6= 0 such that Rd is regular turns out to have a power that is a

test element. We won’t prove this here.

We will explain, however, why the Jacobian ideal of a domain finitely gener-

ated over an algebraically closed field is contained in the test ideal, which is one

of the ingredients of Theorem 1.4. The discussion of the results on test elements

needed for Theorem 1.4 is continued in the next section.

Here is a useful result that leads to existence theorems for test elements.

Theorem 7.1. Let R be a Noetherian domain module-finite over a regular

domain A of characteristic p > 0, and suppose that the extension of fraction

fields is separable. Then:

(a) There are elements d ∈ A−{0} such that dR1/p ⊆ R[A1/p].

(b) For any d as in part (a), the element c = d2 satisfies

cR1/q ⊆ R[A1/q] for all q. (†)

Let Rq = R[A1/q].

(c) Any element c 6= 0 of R that satisfies condition (†) is a test element for R.

Thus, R has test elements.

Proof. If we localize at all nonzero elements of A we are in the case where A

is a field and R is a separable field extension. This is well-known and is left as

an exercise for the reader. It follows that R1/p/R[A1/p], which we may think of

as a finitely generated A1/p-module, is a torsion module. But then it is killed by

an element of A1/p−{0} and, hence, by an element of A−{0}.

For part (b) note we note that since dR1/p ⊆ R[A1/p], we have d1/qR1/pq ⊆

R1/q[A1/pq] for all q = pe. Thus,

d1+1/pR1/p2

⊆ d(d1/pR1/p2

) ⊆ d
(
R1/p[A1/p2

]
)
⊆ R[A1/p][A1/p2

] = R[A1/p2

].

Continuing in this way, one concludes easily by induction that

d1+1/p+···+1/pe−1

R1/pe

⊆ R[A1/pe

].

Since 2 > 1+1/p+ · · · 1/pe−1 for all p ≥ 2, we obtain the desired result.

Finally, suppose that c satisfies condition (†). It suffices to show that for all

I and u ∈ I∗, that cu ∈ I. But if u ∈ I∗ we can choose a ∈ A−{0} (all nonzero

elements of R have nonzero multiples in A) such that auq ∈ I [q] for all q = pe.
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Taking q-th roots gives a1/qu ∈ IR1/q for all q. Multiplying by c gives that

a1/qcu ∈ IR[A1/q ] = IRq for all q, and so a1/q ∈ IRq :Rq
cu for all q. It is not

hard to show that R⊗A A1/q ∼= R[A1/q] here. (The obvious map is onto, and

since R is torsion-free over A and A1/q is A-flat, R⊗A A1/q is torsion-free over,

so that we can check injectivity after localizing at A−{0}, and we thus reduce to

the case where A is a field and R is a finite separable extension field, where the

result is the well-known linear disjointness of separable and purely inseparable

field extensions.) The flatness of Frobenius for A means precisely that A1/q

is flat over A, so that Rq is flat over R; this is simply a base change. Thus,

IRq :Rq
cu = (I :R cu)Rq ⊆ (I :R cu)R1/q. Hence, for all q = pe, a1/q ∈ JR1/q,

where J = I :R cu. This shows that a ∈ J [q] for all q. Since a 6= 0, we must have

that J is the unit ideal, i.e., that cu ∈ I.

The same argument works essentially without change when I is a submodule

of a free module instead of an ideal. �

8. Test Elements Using the Lipman–Sathaye Theorem

This section describes material from [Hochster and Huneke 1999, Section 1.4].

For the moment, we do not make any assumption on the characteristic. Let

T ⊆ R be a module-finite extension, where T is a Noetherian domain, R is

torsion-free as a T -module and the extension is generically smooth. Thus, if

K is the fraction field of T and L = K ⊗T R is the total quotient ring

of R then K → L is a finite product of separable field extensions of K .

The Jacobian ideal J (R/T ) is defined as the 0-th Fitting ideal of the R-

module of Kähler R-differentials ΩR/T , and may be calculated as follows: write

R ∼= T [X1, . . . , Xn]/P and then J (R/T ) is the ideal generated in R by the im-

ages of all the Jacobian determinants ∂(g1, . . . , gn)/∂(X1, . . . , Xn) for n-tuples

g1, . . . , gn of elements of P . Moreover, to generate J (R/T ) it suffices to take

all the n-tuples of gi from a fixed set of generators of P .

Now suppose in addition that T is regular. Let R′ be the integral closure of

R in L , which is well known to be module-finite over T (the usual way to argue

is that any discriminant multiplies it into a finitely generated free T -module).

Let J = J (R/T ) and J ′ = J (R′/T ). The result of Lipman and Sathaye [1981,

Theorem 2, p. 200] may be stated as follows:

Theorem 8.1 (Lipman–Sathaye). With notation as above (in particular ,

there is no assumption about the characteristic, and T is regular), suppose also

that R is an integral domain. If u ∈ L is such that uJ ′ ⊆ R′ then uJR′ ⊆ R.

In particular , we may take u = 1, and so JR′ ⊆ R. �

This property of “capturing the normalization” will enable us to produce test

elements.

Corollary 8.2 (Existence of test elements via the Lipman–Sathaye

theorem). If R is a domain module-finite over a regular domain A of character-
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istic p such that the extension of fraction fields is separable, then every element

c of J = J (R/A) is such that cR1/q ⊆ A1/q[R] for all q, and , in particular ,

cR∞ ⊆ A∞[R]. Thus, if c ∈ J ∩(R−{0}), it is a test element .

Proof. Since A1/q[R] ∼= A1/q⊗A R, the image of c is in J (A1/q[R]/A1/q), and

so the Lipman–Sathaye theorem implies that c multiplies the normalization S of

A1/q[R] into A1/q[R]. Thus, it suffices to see that R1/q is contained in S. Since it

is clearly integral over A1/q[R] (it is obviously integral over R), we need only see

that the elements of R1/q are in the total quotient ring of A1/q[R], and for this

purpose we may localize at A◦ = A−{0}. Thus, we may replace A by its fraction

field and assume that A is a field, and then R is replaced by (A◦)−1R, which

is a separable field extensions. Thus, we come down to the fact that if A ⊆ R

is a finite separable field extension, then the injection A1/q ⊗A R → R1/q (the

map is an injection because separable and purely inseparable field extensions are

linearly disjoint) is an isomorphism, which is immediate by a degree argument.

�

Corollary 8.3 (More test elements via Lipman–Sathaye). Let K be a

field of characteristic p and let R be a d-dimensional geometrically reduced (i .e.,

the ring stays reduced even when one tensors with an inseparable extension of

K —this is automatic if K is perfect) domain over K that is finitely generated

as a K-algebra. Let R = K[x1, . . . , xn]/(g1, . . . , gr) be a presentation of R as

a homomorphic image of a polynomial ring . Then the (n−d)×(n−d) minors of

the Jacobian matrix (∂gi/∂xj) are contained in the test ideal of R, and remain

so after localization and completion. Thus, any element of the Jacobian ideal

generated by all these minors that is in R−{0} is a test element .

Proof. We pass to K(t)⊗K R, if necessary, where K(t) is a simple transcenden-

tal extension of K, to guarantee that the field is infinite. Our hypothesis remains

the same, the Jacobian matrix does not change, and, since K(t)⊗K R is faith-

fully flat over R, it suffices to consider the latter ring. Thus, we may assume

without loss of generality that K is infinite. The calculation of the Jacobian

ideal is independent of the choice of indeterminates. We are therefore free to

make a linear change of coordinates, which corresponds to choosing an element

of G = GL(n,K) ⊆ Kn2

to act on the one-forms of K[x1, . . . , xn]. For a dense

Zariski open set U of G ⊆ Kn2

, if we make a change of coordinates corresponding

to an element γ ∈ U ⊆ G then, for every choice of d of the (new) indeterminates,

if A denotes the K-subalgebra of R that these d new indeterminates generate,

the two conditions listed below will hold:

(1) R will be module-finite over A (and the d chosen indeterminates will then,

perforce, be algebraically independent).

(2) R will be generically smooth over A.

We may consider these two statements separately, for if each holds for a dense

Zariski open subset of G we may intersect the two subsets. The first state-
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ment follows from the standard “linear change of variable” proofs of the Noether

normalization theorem for affine K-algebras (these may be used whenever the

ring contains an infinite field). For the second, we want each d element subset,

say, after renumbering, x1, . . . , xd, of the variables to be a separating tran-

scendence basis for the fraction field L of R over K. (The fact that R is geo-

metrically reduced over K implies that L is separably generated over K.) By

[Kunz 1986, Theorem 5.10(d)], for example, a necessary and sufficient condition

for x1, . . . , xd to be a separating transcendence basis is that the differentials of

these elements dx1, . . . , dxd in ΩL/K
∼= Ld be a basis for ΩL/K as an L-vector

space. Since the differentials of the original variables span ΩL/K over L, it is

clear that the set of elements of G for which all d element subsets of the new

variables have differentials that span ΩL/K contains a Zariski dense open set.

Now suppose that a suitable change of coordinates has been made, and, as

above, let A be the ring generated over K by some set of d of the elements xi.

The n−d size minors of (∂gi/∂xj) involving the n−d columns of (∂gi/∂xj) corre-

sponding to variables not chosen as generators of A precisely generate J (R/A).

R is module-finite over A by the general position argument, and since it is

equidimensional and reduced, it is likewise torsion-free over A, which is a regu-

lar domain. It is generically smooth likewise, because of the general position of

the variables. The result is now immediate from Corollary 8.2: as we vary the set

of d variables, every n−d size minor occurs as a generator of some J (R/A). �

9. Tight Closure for Submodules

We make some brief remarks on how to extend the theory of tight closure to

submodules of arbitrary modules.

Let R be a Noetherian ring of positive prime characteristic p and let G be a

free R-module with a specified free basis uj , which we allow to be infinite. Then

we may define an action of the Frobenius endomorphism F and its iterates on G

very simply as follows: if g =
∑t

i=1 riuji
(where the ji are distinct) we let F e(g),

which we also denote gpe

, be
∑t

i=1 rpe

i uji
. Thus, we are simply letting F act (as

it does on the ring) on all the coefficients that occur in the representation of an

element of G in terms of the free basis. If N ⊆ G is a submodule, we let N [pe]

denote the submodule of G spanned by all the elements gpe

for g ∈ N . We then

define an element x ∈ G to be in N ∗ if there exists c ∈ R◦ such that cxpe

∈ N [pe]

for all e � 0.

More generally, if M is any R-module, N is a submodule, and we want to

determine whether x ∈ M is in the tight closure N ∗ of N in M , we can proceed

by mapping a free module G onto M , taking an element g ∈ G that maps to x,

letting H be the inverse image of N in G, and letting x be in N ∗
M precisely when

g ∈ H∗
G, where we are using subscripts to indicate the ambient module. This

definition turns out to be independent of the choice of free module G mapping

onto M , and of the choice of free basis for G.
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I believe that there are many important questions about the behavior of tight

closure for modules that are not finitely generated over the ring, especially for

Artinian modules over local rings. See question 3 in the next section.

However, for the rest of this section we restrict attention to the case of finitely

generated modules. The theory of test elements for tight closure of ideals extends

without change to the generality of modules.

In order to prove the result of Theorem 1.4 one may make use of a version of

the phantom acyclicity theorem. We first recall the result of [Buchsbaum and

Eisenbud 1973] concerning when a finite free complex over a Noetherian ring R

is acyclic. Suppose that the complex is

0 → Rbn → · · · → Rb0 → 0

and that ri is the (determinantal) rank of the matrix αi giving the map from

Rbi → Rbi−1 , 0 ≤ i ≤ n+1, where bn+1 is defined to be 0. The result of

[Buchsbaum and Eisenbud 1973] is that the complex is acyclic if and only if

(1) for 0 ≤ i ≤ n, bi = ri+1 +ri, and

(2) for 1 ≤ i ≤ n, the depth of the ideal Ji generated by the ri size minors of αi

is at least i (this is automatic if the ideal generated by the minors is the unit

ideal; by convention, the unit ideal has depth +∞).

A complex 0 → Gn → · · · → G0 → 0 is said to be phantom acyclic if for all

i ≥ 1, one has that the kernel Zi of Gi → Gi−1 is in the tight closure of the

module of boundaries Bi (the image of Gi+1 in Gi) in Gi. Note that this implies

that Zi/Bi is killed by the test ideal.

Consider the following weakening of condition (2) above:

(2◦) for 1 ≤ i ≤ n, the height of the ideal Ji generated by the ri size minors of

αi is at least i (this is automatic if the ideal generated by the minors is the

unit ideal; by convention, the unit ideal has height +∞).

Then:

Theorem 9.1 (Phantom acyclicity criterion). Let R be a reduced biequi-

dimensional Noetherian ring of positive characteristic. A finite free complex as

above is phantom acyclic provided that conditions (1) and (2◦) hold .

See [Hochster and Huneke 1990] and [Hochster and Huneke 1993] for detailed

treatments where the result is established in much greater generality and a partial

converse is proved, and to [Aberbach 1994] for the further development of the

closely related notion of finite phantom projective dimension.

Note that in a domain, condition (2◦) simply says that every Ji has height

at least i: this replaces the subtle and difficult notion of “depth” by the much

more tractable notion of “height” (or “codimension”).
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Theorem 1.4 is simply the result of applying the phantom acyclicity criterion

to a Koszul complex. Conditions (1) and (2) are easy to verify. Therefore, the

higher homology is killed by the test ideal, which contains the Jacobian ideal.

There is another point of view that is very helpful in understanding the phan-

tom acyclicity theorem. It involves the main result of [Hochster and Huneke

1991a]. If R is a domain, let R+ denote the integral closure of R in an algebraic

closure of its fraction field, which is a maximal integral extension of R that is a

domain. It is unique up to non-unique isomorphism. The theorem of [Hochster

and Huneke 1991a] is that every system of parameters of R is a regular sequence

in R+: thus, R+ is a big Cohen–Macaulay algebra for R (and for any module-

finite extension domain of R, all of which are embeddable in R+. Suppose that

one has a complex that satisfies the hypothesis of the phantom acyclicity crite-

rion. When one tensors with R+ it actually becomes acyclic: heights become

depths in R+, and one may apply a generalization to the non-Noetherian case

of the acyclicity criterion of [Buchsbaum and Eisenbud 1973] presented in great

detail in [Northcott 1976]. One may use this to see that any cycle becomes a

boundary after tensoring with a sufficiently large but module-finite extension of

R. The fact that the cycles are in the tight closure of the boundaries is now

analogous to the fact that when an ideal I ⊆ R is expanded and then contracted

from a module-finite extension S of R, we have IS∩R ⊆ I∗: compare Theorem

3.6.

Finally, we mention the vanishing theorem for maps of Tor. Let A ⊆ R → S

be maps of rings of characteristic p, where A is regular, R is module-finite and

torsion-free over A, and S is any regular ring. The map R → S is arbitrary here:

it need not be injective nor surjective. Let M be any R-module.

Theorem 9.2 (Vanishing theorem for maps of Tor). With assumptions

as just above, the maps TorA
i (M, R) → TorA

i (M, S) are 0 for all i ≥ 1.

Sketch of proof. One may easily reduce to the case where S is complete

local and then to the case where A is complete local. By a direct limit argument

one may reduce to the case where M is finitely generated over A. Then M has

a finite free resolution over A, which satisfies the hypothesis of the characteri-

zation of acyclic complexes given in [Buchsbaum and Eisenbud 1973]. When we

tensor with R over A we get a free complex over R that satisfies the phantom

acyclicity theorem: every cycle is in the tight closure of the boundaries. Taking

its homology gives the TorA
i (M, R). Now when we tensor S, every module is

tightly closed, so the cycles coming from the complex over R are now boundaries,

which gives the desired result. �

See [Hochster and Huneke 1990; 1993], the discussion in [Hochster and Huneke

1995], and [Ranganathan 2000]. This is an open question in mixed characteristic.

This vanishing result is amazingly powerful. In the case where S is simply a

field, it implies the direct summand conjecture, i.e., that regular rings are direct
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summands of their module-finite extensions. In the case where S is regular and

R is a direct summand of S it implies that R is Cohen–Macaulay. Both questions

are open in mixed characteristic. The details of these implications are given in

[Hochster and Huneke 1995]. In [Ranganathan 2000], it is shown, somewhat

surprisingly, that the vanishing theorem for maps of Tor is actually equivalent

to the following question about splitting: let R be a regular local ring, let S be

a module-finite extension, and suppose that P is a height one prime ideal of S

that contracts to xR, where x is a regular parameter in R. Then xR is a direct

summand of S as an R-module.

10. Further Thoughts and Questions

What we have said about tight closure so far is only the tip of an iceberg.

Here are some major open questions.

1. Does tight closure commute with localization under mild assumptions on

the ring? This is not known to be true even for finitely generated algebras over

a field. Aspects of the problem are discussed in [Aberbach et al. 1993; Hochster

and Huneke 2000; Vraciu 2000].

2. Under mild conditions, if a ring has the property that every ideal is tightly

closed, does that continue to hold when one localizes? This is not known for

finitely generated algebras over a field, nor for complete local rings. An affirma-

tive answer to 1. would imply an affirmative answer to 2.

Rings such that every ideal is tightly closed are called weakly F-regular. The

word “weakly” is omitted if this property also holds for all localizations of the

ring. Weakly F-regular rings are Cohen–Macaulay and normal under very mild

conditions—this holds even if one only assumes that ideals generated by pa-

rameters are tightly closed (this weaker property is called F-rationality and is

closely related to the notion of rational singularities; see [Hara 1998; Smith

1997; Vélez 1995; Enescu 2000]). Both of the conditions of weak F-regularity

and F-rationality tend to imply that the singularities of the ring are in some

sense good. However, the theory is complicated [Hara and Watanabe 2002]. It

is worth noting that weak F-regularity does not deform [Singh 1999], and that

direct summands of F-rational rings are not necessarily F-rational [Watanabe

1997]. See also [Hara et al. 2002a; 2002b]. Weak F-regularity is established for

some important classes of rings (those defined by the vanishing of the minors of

fixed size of a matrix of indeterminates, and homogeneous coordinate rings of

Grassmannians) in [Hochster and Huneke 1994b, Theorem 7.14].

3. Let M be an Artinian module over, say, a complete reduced local ring

with a perfect residue field. Let N be a submodule of M , Is it true that u ∈ N ∗
M

if and only if there exists Q with N ⊆ Q ⊆ M with Q/N of finite length such

that u ∈ N∗
Q? This is true in a graded version and for isolated singularities

[Lyubeznik and Smith 1999; 2001]; other cases are established in [Elitzur 2003].
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For any domain R, let R+ denote the integral closure of R in an algebraic

closure of its fraction field. This is unique up to non-unique isomorphism, and

may be thought of as a “largest” domain extension of R that is integral over R.

4. For an excellent local domain R, is an element r ∈ R in the tight closure

of I if and only if it is in IS for some module-finite extension domain of R? It

is equivalent to assert that for such a local domain R, I∗ = IR+∩R. This is

known for ideals generated by part of a system of parameters [Smith 1994]. It

is known that IR+∩R ⊆ I∗. For some results on homogeneous coordinate rings

of elliptic curves, see the remarks following the next question.

It is known in characteristic p that for a complete local domain R, and element

u ∈ R is in I∗ if and only if it is in IB∩R for some big Cohen–Macaulay algebra

extension ring B of R: see [Hochster 1994a, Section 11].

It is worth mentioning that there is an intimate connection between tight

closure and the existence of big Cohen–Macaulay algebras B over local rings

(R,m), i.e., algebras B such that mB 6= B and every system of parameters for

R is a regular sequence on B. Tight closure ideas led to the proof in [Hochster

and Huneke 1992] that if R is an excellent local domain of characteristic p then

R+ is a big Cohen–Macaulay algebra. Moreover, for complete local rings R, it

is known [Hochster 1994a, Section 11] that u ∈ I∗ if and only if R has a big

Cohen–Macaulay algebra B such that u ∈ IB.

5. Is there an effective way to compute tight closures? The answer is not

known even for ideals of cubical cones, i.e., of rings of the form K[X, Y, Z]/(X 3+

Y 3+Z3) in positive characteristic different from 3. However, in cones over elliptic

curves, tight closure agrees with plus closure (i.e., with IR+∩R) for homogeneous

ideals I primary to the homogeneous maximal ideal : see [Brenner 2003b; 2002].

For ideals that are not homogeneous, the question raised in 4. is open even for

such rings. When the characteristic of K is congruent to 2 mod 3, it is even

possible that tight closure agrees with Frobenius closure in these rings. See

[McDermott 2000; Vraciu 2002].

6. How can one extend tight closure to mixed characteristic? By far the

most intriguing result along these lines is due to Ray Heitmann [2002], who has

proved that if (R,m) is a complete local domain of dimension 3 and mixed char-

acteristic p, then every Koszul relation on parameters in R+ is annihilated by

multiplication by arbitrarily small positive rational powers of p (that is, by p1/N

for arbitrarily large integers N). This implies that regular local rings of dimen-

sion 3 are direct summands of their module-finite extension rings. Heitmann’s

result can be used to prove the existence of big Cohen–Macaulay algebras in

dimension 3: see [Hochster 2002]. Other possibilities are explored in [Hochster

2003] and [Hochster and Vélez 2004].
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Appendix: Some Examples in Tight Closure

by Graham J. Leuschke

Tight closure and related methods in the study of rings of prime character-

istic have taken on central importance in commutative algebra, leading to both

new results and improvements on old ones. Unfortunately, tight closure has a

reputation for inaccessibility to novices, with what can seem a bewildering array

of F- prefixes and other terminology. The very definition of tight closure is less

than immediately illuminating:

Definition A.1. Let R be a Noetherian ring of prime characteristic p. Let I

be an ideal of R. An element x ∈ R is said to be in the tight closure of I if there

exists an element c, not in any minimal prime of R, so that for all large enough

q = pe, cxq ∈ I [q], where I [q] is the ideal generated by the q-th powers of the

elements of I. In this case we write x ∈ I∗.

This appendix is based on an hour-long help session about tight closure that I

gave at MSRI following the series of lectures by Mel Hochster that constitute

the bulk of this article. The help session itself was quite informal, driven mostly

by questions from the audience, with the goal of presenting enough examples of

computations to give a feeling for how the definition is used. The reader will

quickly see that the methods are largely ad hoc; in fact, at this time there is no

useful algorithm for determining that a given element is or is not in a certain

tight closure.2 Still, certain patterns will arise that indicate how problems of

this sort are generally solved.

We first discuss the examples. Examples A.1 and A.2 are drawn from [Huneke

1998]. Example A.3 was shown me by Moira McDermott, whom I thank here

for her help and insight into some of these computations.

After that, I present a few auxiliary results on tight closure, including the

Strong Vanishing Theorem for hypersurfaces and some material on test elements.

This section serves several purposes: In addition to putting the examples in

context, the results address some of the audience questions raised during the

help session and make this appendix relatively self-contained. I am grateful to

Sean Sather-Wagstaff for his notes from the help session on this material.

Throughout, we work with Noetherian rings containing a field k of positive

characteristic p, and write q for a varying power of p. Variables will be repre-

sented by capital letters, which we routinely decapitalize to indicate their images

in a quotient ring.

2See, however, [Sullivant 2002] for a procedure for calculating tight closures of monomial
ideals in Fermat rings. Also, there is an algorithm due to Hochster for countable affine rings
which involves enumerating all module-finite algebras over the ring. It is effective whenever
tight closure is known to be the same as plus closure, but is impractical to implement.
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The examples. We begin with the canonical first example of tight closure. It

involves the “cubical cone” or “Fermat cubic” ring

R = k[[X,Y,Z]]/(X3+Y 3 +Z3),

which is in some sense the first nontrivial ring from the point of view of tight

closure.

Example A.1. Let R = k[[X,Y,Z]]/(X3 +Y 3 +Z3), where k is a field of char-

acteristic p 6= 3, and let I = (y, z). Then I∗ = (x2, y, z).

We know from the example at the end of Section 6 (page 192) that x2 ∈ (y, z)∗;

we will reproduce the argument here, since it has a flavor to which we should

become accustomed. We will take c = z in the definition of tight closure, so we

will show that z(x2)q ∈ (y, z)[q] = (yq , zq) for all q = pe. For a general q, write

2q = 3u+ i, where i is 1 or 2. Expand z(x2)q:

z(x2)q = zx3u+i = zxi(x3)u = (−1)uzxi(y3 +z3)u

= (−1)uzxi
u∑

j=0

(
u
j

)
y3jz3(u−j).

Consider a monomial xiy3jz3(u−j)+1 in this sum. If we have both 3j ≤ q−1 and

3(u−j)+1 ≤ q−1, then 3u+1 ≤ 2q−2, so 2q ≥ 3u+3, a contradiction. Therefore

each monomial in the expansion of z(x2)q has degree at least q in either y or z,

that is, each monomial is in (yq , zq), as desired.

Now we need only show that x /∈ I∗. This argument is due to Mordechai

Katzman, by way of [Huneke 1998]. We take for granted that zN is a test element

for some large N , that is, zN can be used as c in any and all tight closure tests

(see Definition A.2 and Theorem A.9). Then x ∈ I∗ if and only if zNxq ∈ (yq , zq)

for all q. Choose q to be larger than N and let J = (X3 +Y 3 +Z3, Y q, Zq) ⊆

k[X,Y,Z].

Let > be the reverse lexicographic term order on k[X,Y,Z] with X > Y > Z.

Then the initial ideal in>(J) is (X3, Y q, Zq). Write q = 3u+ i, where i is either

1 or 2. Then Xq = X3u+i ≡ (−1)u(Y 3 +Z3)uXi modulo J . We also have

in>(ZNXq) = in>(ZN (−1)u(Y 3 +Z3)uXi) = XiY 3uZN .

Since N < q, this last is not in in>(J) = (X3, Y q, Zq), and we see that ZNXq

is not in J . Thus zNxq /∈ (yq , zq) in k[X,Y,Z]/(X3+Y 3 +Z3). The same holds

in R since k[X,Y,Z]/J has finite length.

At this point in the help session, an audience member asked, “What difference do

the numbers make?” That is, are the exponents (3, 3, 3 in the case of the Fermat

cubic) vital to the outcome of the example? The next example, a side-by-side

comparison, shows that they are indeed.

Example A.2. Let S = k[[X,Y,Z]], where the characteristic of k is greater than

7, and define two polynomials: f1 = X2 +Y 3 +Z5, and f2 = X2 +Y 3 +Z7. Let
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R1 = S/(f1) and R2 = S/(f2), and put Ii = (y, z)Ri for i = 1, 2. Then I∗
1 = I1,

whereas I∗
2 = (x, y, z)R2.

We take for granted that for some large N , xN is a test element for ideals of

both rings, that is, we may take c = xN in the definition of tight closure (see

Theorem A.9).

For the first assertion, it suffices to show that xNxq /∈ (yq, zq) for some q = pe.

Since p > 5, p is relatively prime to 30, and after possibly increasing N slightly,

we can find a power q of p so that q = 30u−N +2 for some u. Expand xNxq:

xN+q = x30u+2 = (x2)15u+1 = ±(y3 +z5)15u+1 = ±
15u+1∑

j=0

y3jz5(15u−j+1).

To show that xq+1 /∈ (yq, zq), we just need to find j such that 3j < q and

5(15u− j +1) < q. Taking j = 10u fills the bill. It remains only to show that

the coefficient of y3(10u)z5(5u+1) is nonzero modulo p, that is, that the binomial

coefficient
(
15u+1
10u

)
is not divisible by p. We must show that if a power of p

divides the numerator of the fraction giving
(
15u+1
10u

)
, then it also divides the

denominator. So suppose that pa divides 15u+1−j for some j ≤ 5k. Then 2pa

divides 30u+2−j. Since q = pe = 30u+1, we see that 2pa divides pe−(2j−1).

It follows that pa divides 2j−1, which is a factor of the denominator, and we

are done.

To see that I∗
2 = (x, y, z)R2, fix q and write N +q = 2u, again after increasing

N if necessary. Then xNxq = x2u = (−1)u(y3 +z7)u. Each monomial in the

binomial expansion of the right-hand side is of the form y3jz7(u−j). If both

3j < q and 7(u−j) < q for some j, then 21j+21(u−j) < 7q+3q = 10q, forcing

21u < 10q, or 21u < 20u−10, which is absurd. Thus, for each j, either 3j ≥ q

or 7(u−j) ≥ q, which implies xNxq ∈ (yq, zq), so x ∈ (y, z)∗.

In fact, R1 is weakly F-regular, which means that every ideal is tightly closed.

On the other hand, we have shown above that R2 is not weakly F-regular.

The next example is due to M. McDermott. In addition to showing that the

Strong Vanishing Theorem for hypersurfaces (Theorem A.8) is sharp, it illus-

trates the occasionally mysterious nature of tight closure computations: Some-

times the numbers just work out, especially when p is small.

Example A.3. Let R = k[A,B,C,D,E]/(A4 +B4 +C4 +D4 +E4), where k is

a field of characteristic p, and let I = (a4, b4, c4, d4). By the Strong Vanishing

Theorem for hypersurfaces, for p > 8 we have I∗ = I+R≥16 = I is tightly closed.

For smaller p, though, I need not be tightly closed. In particular, when p = 7

we have a3b3c3d3e3 ∈ I∗.

To see this, let w = a3b3c3d3e3. Then

w7 = a21b21c21d21e21 = −a21b21c21d21e(a4 +b4 +c4 +d4)5.

Every monomial of (a4 + b4 + c4 +d4)5 has at least one variable to the eighth

power, so w7 ∈ (a29, b29, c29, d29) ⊆ I [7]. So in fact wp ∈ I [p] and w is in the
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Frobenius closure of I. In particular, taking c = 1 shows that w is in the tight

closure of I.

The next example is the most involved we will consider. It is due originally to

Anurag Singh [1998], though the proof we will present is due to Holger Brenner,

with improvements by Singh and Huneke. It returns to the Fermat cubic of

Example A.1.

Example A.4. Let R = k[[X,Y,Z]]/(X3 +Y 3 +Z3), where k is a field of char-

acteristic p > 3. Then xyz ∈ (x2, y2, z2)∗.

We will need the following lemma, which is an easy consequence of colon-

capturing [Huneke 1998, Theorem 2.3].

Lemma A.5. Let R be a complete equidimensional local ring with a test element

c. Let x1, . . . , xn, y be part of a system of parameters, and set I = (x1, . . . , xn).

Then for any ideal J and any element h ∈ R, hy ∈ (I + yJ)∗ if and only if

h ∈ (I +J)∗.

Proof. Assume first that hy ∈ (I+yJ)∗. This happens if and only if for every q

we have c(yh)q ∈ (I+yJ)[q], which is equal to I [q]+yqJ [q]. So this happens if and

only if there exists some aq ∈ J [q] such that yq(chq −aq) ∈ I [q]. Now, by colon-

capturing [Huneke 1998, Theorem 2.3], I [q] : yq ⊆ (I [q])∗, so c(chq −aq) ∈ I [q].

Unraveling this one more time gives c2hq ∈ I [q] +J [q], as desired. The converse

follows by retracing these steps. �

Returning to the example, we see by the Lemma that the claim is equivalent to

showing that xy2z ∈ (x2, y3, yz2)∗ = (x2, z3, yz2)∗. This in turn is equivalent to

showing that xy2 ∈ (x2, z2, yz)∗.

For q = pe, write q = 3u+ i, where i is 1 or 2. We will take c = x3−iy6−2i in

the definition of tight closure. First, expand:

y6−2iy2q = y6−2iy6u+2i = y3y3(2u+1) = y3(−1)2u+1(x3 +z3)2u+1

= y3(−1)2u+1
2u+1∑

j=0

(
2u+1

j

)
x3(2u+1−j)z3j .

We separate this sum into one part with a factor of xq and one with a factor of

zq, writing the preceding expression as y3(−1)2u+1 times Q, where

Q =

( u∑

j=0

(
2u+1

j

)
x3(2u+1−j)z3j +

2u+1∑

j=u+1

(
2u+1

j

)
x3(2u+1−j)z3j

)

=

(
x3u+3

u∑

j=0

(
2u+1

j

)
x3(u−j)z3j + z3u+3

2u+1∑

j=u+1

(
2u+1

j

)
x3(2u+1−j)z3(j−u−1)

)

=

(
xqx3−i

u∑

j=0

(
2u+1

j

)
x3(u−j)z3j + zqz3−i

u∑

j=0

(
2u+1

j+u+1

)
x3(u−j)z3j

)
.
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Thus y6−2iy2q = Fxq +Gy3zq, where

F = y3(−1)2u+1x3−i
u∑

j=0

(
2u+1

j

)
x3(u−j)z3j ,

G = (−1)2u+1z3−i
u∑

j=0

(
2u+1

j+u+1

)
x3(u−j)z3j .

We are trying to show that the element

(x3−iy6−2i)xqy2q = x3−iFx2q +Gx3−i+qy3zq

is in the ideal (x2, z2, yz)[q]. The term involving Fx2q is taken care of, so it

suffices to show that Gx3−i+q ∈ (y, z)[q]. Write Gx3−i+q solely in terms of y and

z (recall that q = 3u+ i):

Gx3−i+q = x3+3u(−1)2u+1z3−i
u∑

j=0

(
2u+1

j+u+1

)
x3(u−j)z3j

= (−1)3u+2(y3 +z3)u+1z3−i
u∑

j=0

(
2u+1

j+u+1

)
(−1)u−j(y3 +z3)u−jz3j .

Each monomial in this sum has degree 3(u+1)+(3−i)+3u = 6u+6−i ≥ 6u+4 ≥

2q. Since the sum involves only y and z, each monomial must have degree at

least q in either y or z, as desired.

One might reasonably ask why we chose to show the equivalent statement that

xy2 ∈ (x2, z2, yz)∗, rather than the originally claimed inclusion. The glib answer

is that it works. A more considered and satisfying reply might point to the fact

that we reduced the problem in the end to showing that Gx3−i+q ∈ (y, z)[q],

which was quite easy, and in the original formulation there was simply too much

symmetry to make a similar reduction.

Brenner has recently used powerful geometric methods ([Brenner 2004] and

[Brenner 2003a]) to prove results like the following, which vastly generalizes the

example above.

Theorem A.6 [Brenner 2004, Corollary 9.3]. Let k denote an algebraically closed

field of characteristic 0 and let F ∈ k[x, y, z] denote a homogeneous polynomial

of degree δ such that R = k[x, y, z]/(F ) is a normal domain. Let f1, f2, f3 ∈ R

denote R+-primary homogeneous elements of degree d1, d2, d3. Suppose that the

sheaf of relations R is indecomposable on the curve Y = Proj R. Then:

(i) Rm ⊆ (f1, f2, f3)
∗ for m ≥ d1+d2+d3

2 + δ−3
2 .

(ii) For m < d1+d2+d3

2 − δ+3
2 we have (f1, f2, f3)

∗∩Rm = (f1, f2, f3)∩Rm.

This follows from a more general fact involving semistability of vector bundles:
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Theorem A.7 [Brenner 2004, Theorem 8.1]. Let k denote an algebraically closed

field of characteristic 0 and let R be a normal two-dimensional standard-graded

k-algebra. Set t = d d1+...+dn

n−1 e. Suppose that the sheaf of relations R(m) for

ideal generators f1, . . . , fn is semistable. Then

(f1, . . . , fn)∗ = (f1, . . . , fn)+R≥t .

Auxiliary results. We now mention a few results that were prepared for the

help session, but were not presented. They are included here both as examples

of “what might have been” and to make this appendix relatively self-contained

(more so than the help session on which it is based). Complete proofs are given

in [Huneke 1998].

The first result is the Strong Vanishing Theorem for hypersurfaces, which was

mentioned in Example A.3.

Theorem A.8. Let R = k[X0, . . . ,Xd]/(f) be a quasi-homogeneous graded

hypersurface over a field k of characteristic p > 0. Assume that R is an isolated

singularity , and that the partials ∂f
∂X1

, . . . , ∂f
∂Xd

form a system of parameters for

R. If p > (d−1)(deg f)−
∑d

i=1 deg Xi, then for parameters y1, . . . , yd of degrees

a1, . . . , ad,

(y1, . . . , yd)
∗ = (y1, . . . , yd)+R≥a1+...+ad

.

This theorem is particularly well-suited for computations; see [Sullivant 2002].

The audience at MSRI was interested in the theory of test elements, specifi-

cally when they are known to exist.

Definition A.2. An element c of R, not in any minimal prime, is called a test

element for ideals of R if xI∗ ⊆ I for every ideal I ⊆ R. Equivalently, c can be

used for all tight closure tests: x ∈ R is in I∗ if and only if cxq ∈ I [q] for all

q = pe.

The most obvious immediate benefit of the existence of test elements is in show-

ing that elements are not in tight closures. If c is known to be a test element,

and it can be shown that cxq /∈ I [q] for any one q, then x /∈ I∗. We saw this

principle in action in Example A.2.

The theorem below is not the most general result on the existence of test ele-

ments, but suffices for many applications. We say that a ring R of characteristic

p is F-finite provided the ring of p-th roots R1/p is a finitely generated R-module.

A complete local ring (R,m, k) such that [k : kp] < ∞ is always F-finite, but

there are many examples of rings, even fields, that are not.

Theorem A.9 [Hochster and Huneke 1994a, Prop. 6.23]. Let R be reduced

and F-finite or reduced and essentially of finite type over an excellent local ring .

Let c be an element of R not in any minimal prime. If the localization Rc is

Gorenstein and weakly F-regular , then c has a power which is a test element . In

particular , if Rc is regular , then c has a power which is a test element .
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The second case of Theorem A.9, in which R is assumed to be essentially of finite

type over an excellent local ring, is deduced from the F-finite case by means of

the “Γ-construction” [Hochster and Huneke 1994a], which shows that such a

ring has a faithfully flat extension RΓ which is F-finite, and such that RΓ
c is still

weakly F-regular and Gorenstein. Then some power of c is a test element in RΓ,

and that property descends automatically from faithfully flat extensions.

Other, similar, sources of abundant test elements are the theorem of Lipman–

Sathaye and its consequences (see Sections 7 and 8 above).
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réductifs”, Invent. Math. 88:1 (1987), 65–68.

[Brenner 2002] H. Brenner, “Tight closure and plus closure for cones over elliptic
curves”, 2002. Available at math.AC/0209302.

[Brenner 2003a] H. Brenner, The theory of tight closure from the viewpoint of vector

bundles, Habilitationsschrift, Universität Bochum, 2003. Available at www.arxiv.org/
math.AG/0307161.

[Brenner 2003b] H. Brenner, “Tight closure and projective bundles”, J. Algebra 265:1
(2003), 45–78.

[Brenner 2004] H. Brenner, “Slopes of vector bundles on projective curves and appli-
cations to tight closure problems”, Trans. Amer. Math. Soc. 356:1 (2004), 371–392
(electronic).

[Bruns 1996] W. Bruns, “Tight closure”, Bull. Amer. Math. Soc. (N.S.) 33:4 (1996),
447–457.

[Buchsbaum and Eisenbud 1973] D. A. Buchsbaum and D. Eisenbud, “What makes a
complex exact?”, J. Algebra 25 (1973), 259–268.

[Ein et al. 2001] L. Ein, R. Lazarsfeld, and K. E. Smith, “Uniform bounds and symbolic
powers on smooth varieties”, Invent. Math. 144:2 (2001), 241–252.

[Elitzur 2003] H. Elitzur, Tight closure in Artinian modules, Ph.D. thesis, University
of Michigan, Ann Arbor, 2003.

[Enescu 2000] F. Enescu, “On the behavior of F-rational rings under flat base change”,
J. Algebra 233:2 (2000), 543–566.

[Hara 1998] N. Hara, “A characterization of rational singularities in terms of injectivity
of Frobenius maps”, Amer. J. Math. 120:5 (1998), 981–996.

[Hara 2001] N. Hara, “Geometric interpretation of tight closure and test ideals”, Trans.

Am. Math. Soc. 353:5 (2001), 1885–1906.

[Hara and Watanabe 2002] N. Hara and K. Watanabe, “F-regular and F-pure rings
vs. log terminal and log canonical singularities”, J. Algebraic Geom. 11:2 (2002),
363–392.



208 REFERENCES

[Hara and Yoshida 2003] N. Hara and K.-I. Yoshida, “A generalization of tight closure
and multiplier ideals”, Trans. Amer. Math. Soc. 355:8 (2003), 3143–3174.

[Hara et al. 2002a] N. Hara, K. Watanabe, and K.-i. Yoshida, “F-rationality of Rees
algebras”, J. Algebra 247:1 (2002), 153–190.

[Hara et al. 2002b] N. Hara, K. Watanabe, and K.-i. Yoshida, “Rees algebras of F-
regular type”, J. Algebra 247:1 (2002), 191–218.

[Heitmann 2002] R. C. Heitmann, “The direct summand conjecture in dimension
three”, Ann. of Math. (2) 156:2 (2002), 695–712.

[Hochster 1994a] M. Hochster, “Solid closure”, pp. 103–172 in Commutative algebra:

syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), edited by
W. J. Heinzer et al., Contemp. Math. 159, Amer. Math. Soc., Providence, RI, 1994.

[Hochster 1994b] M. Hochster, “Tight closure in equal characteristic, big Cohen-
Macaulay algebras, and solid closure”, pp. 173–196 in Commutative algebra: syzygies,

multiplicities, and birational algebra (South Hadley, MA, 1992), edited by W. J.
Heinzer et al., Contemp. Math. 159, Amer. Math. Soc., Providence, RI, 1994.

[Hochster 1996] M. Hochster, “The notion of tight closure in equal characteristic zero”,
pp. 94–106 (Appendix 1) in Tight closure and its applications, by Craig Huneke,
CBMS Regional Conference Series in Mathematics 88, American Math. Society,
Providence, 1996.

[Hochster 2002] M. Hochster, “Big Cohen-Macaulay algebras in dimension three via
Heitmann’s theorem”, J. Algebra 254:2 (2002), 395–408.

[Hochster 2003] M. Hochster, “Parameter-like sequences and extensions of tight clo-
sure”, pp. 267–287 in Commutative ring theory and applications (Fez, 2001), edited
by M. Fontana et al., Lecture Notes in Pure and Appl. Math. 231, Dekker, New
York, 2003.

[Hochster and Huneke 1988] M. Hochster and C. Huneke, “Tightly closed ideals”, Bull.

Amer. Math. Soc. (N.S.) 18:1 (1988), 45–48.

[Hochster and Huneke 1989a] M. Hochster and C. Huneke, “Tight closure”, pp. 305–
324 in Commutative algebra (Berkeley, 1987), edited by M. Hochster et al., Math.
Sci. Res. Inst. Publ. 15, Springer, New York, 1989.

[Hochster and Huneke 1989b] M. Hochster and C. Huneke, Tight closure and strong

F -regularity (Orsay, 1987), Mém. Soc. Math. France (N.S.) 38, 1989.

[Hochster and Huneke 1990] M. Hochster and C. Huneke, “Tight closure, invariant
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algèbre de fonctions holomorphes avec poids”, Ann. Sci. École Norm. Sup. (4) 5
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