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The Gauss Class Number Problem for Imaginary
Quadratic Fields

DORIAN GOLDFELD

1. Introduction

Let D < 0 be a fundamental discriminant for an imaginary quadratic field
K = Q(

√
D). Such fundamental discriminants D consist of all negative integers

that are either ≡ 1 (mod 4) and square-free, or of the form D = 4m with m ≡ 2
or 3 (mod 4) and square-free. We define

h(D) = #
{

group of nonzero fractional ideals a
b

group of principal ideals (α), α ∈ K×

}
,

to be the cardinality of the ideal class group of K. In the Disquisitiones Arith-
meticae, (1801) [G], Gauss showed (using the language of binary quadratic forms)
that h(D) is finite. He conjectured that

h(D) −→∞ as D −→ −∞,

a result first proved by Heilbronn [H] in 1934. The Disquisitiones also contains
tables of binary quadratic forms with small class numbers (actually tables of
imaginary quadratic fields of small class number with even discriminant which is
a much easier problem to deal with) and Gauss conjectured that his tables were
complete. In modern parlance, we can rewrite Gauss’ tables (we are including
both even and odd discriminants) in the following form.

h(D) 1 2 3 4 5

# of fields 9 18 16 54 25

largest |D| 163 427 907 1555 2683

The problem of finding an effective algorithm to determine all imaginary qua-
dratic fields with a given class number h is known as the Gauss class number
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h problem. The Gauss class number problem is especially intriguing, because if
such an effective algorithm did not exist, then the associated Dirichlet L-function
would have to have a real zero, and the generalized Riemann hypothesis would
necessarily be false. This problem has a long history (see [Go2]) which we do
not replicate here, but the first important milestones were obtained by Heegner
[Heg], Stark [St1; St2], and Baker [B], whose work led to the solution of the class
number one and two problems. The general Gauss class number problem was
finally solved completely by Goldfeld, Gross, and Zagier in 1985 [Go1; Go2; GZ].
The key idea of the proof is based on the following theorem (see [Go1] (1976), for
an essentially equivalent result) which reduced the problem to a finite amount
of computation.

Theorem 1. Let D be a fundamental discriminant of an imaginary quadratic
field . If there exists a modular elliptic curve E (defined over Q) whose associated
base change Hasse–Weil L-function LE/Q(

√
D)(s) has a zero of order ≥ 4 at s = 1

then for every ε > 0, there exists an effective computable constant cε(E) > 0,
depending only on ε,E such that

h(D) > cε(E)(log |D|)1−ε.

Note that the L-function of E/Q, LE(s), always divides LE/Q(
√

D)(s). If an imag-
inary quadratic field Q(

√
D) has small class number, then many small primes

are inert. It is not hard to show that the existence of an elliptic curve whose
associated Hasse–Weil L-function has a triple zero at s = 1 is enough to usually
guarantee that LE/Q(

√
D)(s) has a fourth order zero. This idea will be clarified

in § 3. We also remark, that if LE/Q(
√

D)(s) had a zero of order g ≥ 4, then you
would get (see [G1]) the lower bound

h(D) À (log |D|)g−3e−21
√

g(log log |D|).

Actually, [G1] also gives a similar result for real quadratic fields (D > 0),

h(D) log εD À (log |D|)g−3e−21
√

g(log log |D|),

where εD denotes the fundamental unit. In this case, however, it is required that
LE/Q(

√
D)(s) has a zero of order g ≥ 5 to get a non–trivial lower bound, because

log εD À log D. The term

e−21
√

g(log log |D|)

(obtained by estimating a certain product of primes dividing D) is far from
optimal, because it simultaneously covers the cases of both real and imaginary
quadratic fields. If one considers only imaginary quadratic fields, the term can
be easily written as a simple product over primes dividing D. This was done
by Oesterlé in 1985 [O] who made Theorem 1 explicit. He proved that for
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(D, 5077) = 1,

h(D) >
1
55

log |D|
∏

p|D, p 6=|D|

(
1− b2√pc

p + 1

)
,

which allowed one to solve the class number 3 problem. More recently, using
the above methods, Arno [A] (1992), solved the class number four problem,
and subsequently, work with Robinson and Wheeler [ARW] (1998), and work of
Wagner [Wag] (1996) gave a solution to Gauss’ class number problem for class
numbers 5, 6, 7. The most recent advance in this direction is due to Watkins
[Wat], who obtained the complete list of all imaginary quadratic fields with class
number ≤ 100.

The main aim of this paper is to illustrate the key ideas of the proof of
Theorem 1 by giving full details of the proof for the solution of just the class
number one problem. The case of class number one is considerably simpler than
the general case, but the proof exemplifies the ideas that work in general. We
have not tried to compute or optimize constants, but have focused instead on
exposition of the key ideas.

2. The Deuring–Heilbronn Phenomenon

Let Q(
√

D) denote an imaginary quadratic field with class number h(D) = 1.
If a rational prime p splits completely in Q(

√
D), then (p) = π · π̄, with

π =
(

m + n
√

D

2

)

a principal ideal. It follows that

p =
m2 − n2D

4
=⇒ p >

1 + |D|
4

.

We have thus shown:

Lemma 2. Let Q(
√

D) be an imaginary quadratic field of class number one.
Then all primes less than 1+|D|

4 must be inert .

Lemma 2 can be used to write down prime producing polynomials [Ra]

x2 − x +
|D|+ 1

4
,

(e.g., x2 − x + 41) which takes prime values for x = 1, 2, . . . , |D|−3
4 .

Lemma 2 is the simplest example of the more general phenomenon which says
that an imaginary quadratic field with small class number has the property that
most small rational primes must be inert in that field. It follows that if h(D) = 1,
then the quadratic character χD(n) =

(
D
n

)
(Kronecker symbol) associated to

Q(
√

D) satisfies χD(p) = −1 for most small primes, and thus behaves like the
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Liouville function. Consequently, we heuristically expect that as D → −∞ and
s fixed with Re(s) > 1

2 ,

L(s, χD) =
∏
p

(
1− χD(p)

ps

)−1

∼
∏
p

(
1 +

1
ps

)−1

=
ζ(2s)
ζ(s)

,

so that analytically the Dirichlet L-function, L(s, χD), associated to Q(
√

D)
behaves like ζ(2s)/ζ(s). By f(s) ∼ g(s) in a region s ∈ R ⊂ C we mean that
there exists a small ε > 0 such that |f(s)−g(s)| < ε in the region R. Here we are
appealing to the standard use of approximate functional equations which allow
one to replace an L-function by a short (square root of conductor) sum of its
early Dirichlet coefficients. This is the basis for the so called zero repelling effects
(Deuring–Heilbronn phenomenon) associated to imaginary quadratic fields with
small class number. For example, if h(D) = 1 and D → −∞, and D1 is a fixed
discriminant of a quadratic field, then we expect that for Re(s) > 1

2 ,

L(s, χD1)L(s, χDχD1) ∼ L(2s, χD1),

which implies (see [Da]) that L(s, χD1) has no zeros γ + iρ with γ > 1
2 .

3. Existence of L-functions of Elliptic Curves with Triple Zeros

Let E be an elliptic curve defined over Q whose associated Hasse–Weil L-
function LE(s) vanishes at s = 1. Let LE(s, χd) denote the L-function twisted
by the quadratic character χd of conductor d, a fundamental discriminant of an
imaginary quadratic field. We shall need the Gross–Zagier formula (see [G–Z])

d

ds

(
LE(s)LE(s, χd)

)
s=1

= cE〈Pd, Pd〉, (3.1)

where 〈Pd, Pd〉 is the height pairing of a certain Heegner point PD and cE is an
explicit constant depending on the elliptic curve E. Gross and Zagier showed
that if E is an elliptic curve of conductor 37 and d = −139, then the Heegner
point is torsion and the height pairing 〈Pd, Pd〉 vanishes. By (3.1), this gives a
construction of an L-function with a triple zero at s = 1. Actually, their method
is quite general, and many other such examples can be constructed.

Henceforth, we fix E to be the above elliptic curve of conductor N = 37 ·1392.
Then the Hasse–Weil L-function LE(s) satisfies the functional equation (see
[Shim])

(√
N

2π

)1+s

Γ(1 + s)LE(1 + s) = −
(√

N

2π

)1−s

Γ(1− s)LE(1− s),
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and LE(1 + s) has a MacLaurin expansion of the form

LE(1 + s) = c3s
3 + c4s

5 + {higher odd powers of s}.
Now, let D, with |D| > 163, denote a fundamental discriminant of an imagi-

nary quadratic field with class number one. It is not hard to show that (D, 37 ·
139) = 1. Let χD denote the quadratic Dirichlet character of conductor D. We
define

ΛD(s) =
(

N |D|
4π2

)s

Γ(1 + s)2LE(s)LE(s, χD). (3.2)

Then it can be shown (see [Shim]) that ΛD(s) satisfies the functional equation

ΛD(1 + s) = w · ΛD(1− s), (3.3)

with root number w = χD(−37 · 1392) = χD(−37) = +1, because the early
primes of an imaginary quadratic field Q(

√
D) with class number one must be

inert (Lemma 2). It follows from (3.3) that

LE/Q(
√

D)(s) = LE(s)LE(s, χD)

has a zero of even order at s = 1. Since LE(s) has a zero of order 3 at s = 1, we
immediately see that LE/Q(

√
D)(s) must have a zero of order at least 4 at s = 1.

This is the main requirement of Theorem 1.

4. Solution of the Class Number One Problem

Assume D is sufficiently large and the class number h(D) of Q(
√

D) is one.
We will get a contradiction using zero-repelling ideas (Deuring–Heilbronn phe-
nomenon) of Section 2. The main idea is to consider the integral ID defined by

ID =
1

2πi

2+i∞∫

2−i∞

ΛD(1 + s)
ds

s3
,

where ΛD(1 + s) is given in (3.2).

Lemma 3. We have ID = 0.

Proof. If we shift the line of integration to Re(s) = −2, the residue at s = 0 is
zero because ΛD(1 + s) has a fourth order zero at s = 0. If immediately follows
that

ID =
1

2πi

−2+i∞∫

−2−i∞

ΛD(1 + s)
ds

s3
= − 1

2πi

2+i∞∫

2−i∞

ΛD(1 + s)
ds

s3
= −ID,

after applying the functional equation (3.3) and letting s → −s. Consequently,
ID = 0. ¤
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We will now show that if h(D) = 1 and D is sufficiently large then ID 6= 0.
The heuristics for obtaining this contradiction are easily seen. We may write the
Euler products

LE(s) =
∏
p

(
1− αp

ps

)−1 (
1− βp

ps

)−1

,

LE(s, χD) =
∏
p

(
1− αpχD(p)

ps

)−1 (
1− βpχD(p)

ps

)−1

.

(4.1)

The assumption that h(D) = 1 implies that χD(p) = −1 for all primes p < 1+|D|
4

(Lemma 2). So we expect that analytically the Euler product LE(s)LE(s, χD)
should behave like

φ(s) :=
∏
p

(
1− α2

p

p2s

)−1(
1− β2

p

p2s

)−1

,

where

|αp|2 = |βp|2 = αpβp = p,

for all but finitely many primes p. Now, if f is the weight two Hecke eigenform
associated to E, we have the symmetric square L-function

L
(
s, sym2(f)

)
:=

∏
p

(
1− α2

p

ps

)−1 (
1− αpβp

ps

)−1 (
1− β2

p

ps

)−1

.

Thus φ(s) is essentially L
(
2s, sym2(f)

)
/ζ(2s−1). It is known that L

(
s, sym2(f)

)
is entire which implies that L

(
2s, sym2(f)

)
/ζ(2s− 1) vanishes at s = 1, a result

first proved by [Ogg]. This implies that

φ(1) = 0.

In fact, φ(1) has a simple zero at s = 1 which seems to contradict the fact that
LE(s)LE(s, χD) has a fourth order zero. Although it appears that a contra-
diction could be obtained if LE(s)LE(s, χD) had a double zero at s = 1, this,
unfortunately is not the case. The contradiction is much more subtle and will
be shortly clarified.

We now define

I∗D =
1

2πi

2+i∞∫

2−i∞

(
37 · 1392|D|

4π2

)1+s

Γ(1 + s)2φ(1 + s)
ds

s3
,

which allows us to write

0 = ID = I∗D + Error, (4.2)
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with

Error =
1

2πi

2+i∞∫

2−i∞

(
37·1392|D|

4π2

)1+s

Γ(1+s)2
(
LE(1+s)LE(1+s, χD)−φ(1+s)

) ds

s3
.

(4.3)

Lemma 4. Define Dirichlet coefficients Bn (n = 1, 2, . . .) by the representation

LE(1 + s)LE(1 + s, χD)− φ(1 + s) =
∞∑

n=1

Bn n−1−s.

Also define Dirichlet coefficients νD(n) (n = 1, 2, . . .) by the representation

ζ(s)L(s, χD) =
∞∑

n=1

νD(n)n−s.

Then Bn = 0 for n < 1+|D|
4 . In the other cases, we have

|Bn| ≤
{

2νD(n)
√

n if 1+|D|
4 ≤ n <

( 1+|D|
4

)2,

2d4(n) · √n if n ≥ ( 1+|D|
4

)2,

where d4(n) =
∑

d1d2d3d4=n 1.

Proof. That Bn = 0 for n < 1+|D|
4 follows immediately from Lemma 2. The

upper bound |Bn| ≤ 2d4(n) · n is a consequence of the fact (see (4.1)) that
LE(1 + s)LE(1 + s, χD) is an Euler product of degree 4. Thus, the Dirichlet
coefficients of LE(1 + s)LE(1 + s, χD) are bounded by the Dirichlet coefficients
of the Euler product

∏
p

(
1−

√
p

p1+s

)−1

=
∞∑

n=1

d4(n)
√

n · n−1−s.

The extra factor of 2 in the bound for Bn comes from the consideration of the
additional Euler product for φ(1 + s).

In the range 1+|D|
4 ≤ n <

( 1+|D|
4

)
2, we can only have Bn 6= 0 if n is divisible

by a prime q > 1+|D|
4 . In this range, it is not possible that q2 divides n. This

implies that φ(1+s) does not contribute to Bn since φ(1+s) is a Dirichlet series
formed from perfect squares, i.e., of the form

φ(1 + s) =
∞∑

k=1

b(k)
(k2)1+s .

If we let n = q ·m, we must have Bn = am · aq, where

LE(s) =
∞∑

k=1

ak · k−s.
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Consequently, |Bn| ≤ 2|am|√q. It is easy to see that m must be a perfect square
because m can only be divisible by primes less than 1+|D|

4 . Again, by considering
the Euler product (4.1), we may conclude that in the range 1+|D|

4 ≤ n <
( 1+|D|

4

)
2

the coefficients Bn are bounded by 2νD(n)
√

n where νD(n)
√

n are the Dirichlet
coefficients of the Euler product

∏
p

(
1−

√
p

p1+s

)−1 (
1− χD(p)

√
p

p1+s

)−1

=
∞∑

n=1

νD(n)
√

n · n−1−s.

Clearly,

ζ(s)L(s, χD) =
∞∑

n=1

νD(n) · n−s. ¤

Lemma 5. Let x > 1. Then
∑

x≤n≤2x

νD(n)
√

n ≤ 4e · x3/2L(1, χD) + O
(|D|3/2x−1/2

)
.

If we further assume that |D| > 4 and h(D) = 1, then

∑

x≤n≤2x

νD(n)
√

n ≤ 4πe · x3/2

|D|1/2
+ O

(|D|3/2x−1/2
)
.

Proof. We shall need the well-known Mellin transform

1
2πi

2+i∞∫

2−i∞

xsΓ(s) ds = e−1/x.

It follows that

∑

x≤n≤2x

νD(n)
√

n ≤ 2e

2πi

2+i∞∫

2−i∞

ζ
(
s− 1

2

)
L

(
s− 1

2 , χD

)(
(2x)s − xs

)
Γ(s) ds

= 2e

∞∑
n=1

νD(n)
√

n
(
e−n/(2x) − e−n/x

)
.

Here we have used the fact that 2e
(
e−n/(2x) − e−n/x

)
> 1 for x ≤ n ≤ 2x, and,

otherwise, νD(n) ≥ 0. The above integral can be evaluating by shifting the line
of integration to the left to the line Re(s) = − 1

2 . There is a pole at s = 3
2 coming

from the Riemann zeta function. Consequently
∑

x≤n≤2x

νD(n)
√

n ≤ 2eL(1, χD)
(
(2x)3/2 − x3/2

)

+

∣∣∣∣∣∣∣
2e

2πi

− 1
2+i∞∫

− 1
2−i∞

ζ
(
s− 1

2

)
L

(
s− 1

2 , χD

)(
(2x)s − xs

)
Γ(s) ds

∣∣∣∣∣∣∣
.

(4.4)
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The functional equation

ζ(s)L(s, χD) =

(√
|D|
π

)1−2s Γ
(

1−s
2

)
Γ

(
2−s
2

)

Γ
(

s
2

)
Γ

(
1+s
2

) ζ(1− s)L(1− s, χD),

together with Stirling’s asymptotic formula

lim
|t|→∞

|Γ(σ + it)| e(π/2)|t| |t|(1/2)−σ =
√

2π,

implies that the shifted integral in (4.4) converges absolutely and is bounded by
O

(|D|3/2x−1
)
. This completes the first part of the proof of Lemma 5. For

the second part, we simply use Dirichlet’s class number formula (see [Da]),
L(1, χD) = πh(D)/|D|1/2, which holds for |D| > 4. ¤

Lemma 6. For y > 0, define

G(y) :=
1

2πi

2+i∞∫

2−i∞

ys+1Γ(1 + s)2
ds

s3
.

Then

G(y) < 2y2e1/
√

y.

Proof. Recall the definition of the Gamma function

Γ(s) =
∫ ∞

0

e−uus du

u
,

which satisfies Γ(s + 1) = sΓ(s). It follows that

G(y) =
1

2πi

2+i∞∫

2−i∞

ys+1

∫ ∞

0

∫ ∞

0

e−u1−u2(u1u2)s du1 du2

u1u2

ds

s
. (4.5)

On the other hand, we have the classical integral

1
2πi

2+i∞∫

2−i∞

xs ds

s
=





1 if x > 1,
1
2 if x = 1,
0 if x < 1.

If we now apply the above to (4.5) (after interchanging integrals), we obtain

G(y) = y

∫ ∫

u1u2≥ y−1

e−u1−u2
du1 du2

u1u2
. (4.6)
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To complete the proof, we use the range of integration, u1u2 ≥ y−1, to show
that 1/(u1u2) ≤ y, from which it follows from (4.6) that

G(y) ≤ y2

∫ ∫

u1u2≥ y−1

e−u1−u2 du1 du2

= y2

∫ ∞

0

e−1/(u2y)−u2 du2 = y
3
2

∫ ∞

0

e(−1/
√

y)(u2+1/u2) du2

≤ 2y
3
2

∫ ∞

1

e(−1/
√

y)(u2+1/u2) du2 < 2y2e−1/
√

y. ¤

It now follows from (4.3), Lemma 4, and the definition of G(y) given in Lemma 6
that

|Error| ≤
∑

n≥ 1+|D|
4

|Bn| ·G
(

37 · 1392|D|
4π2n

)
.

The bound for G(y) given in Lemma 6 implies that

|Error| ≤
∑

1+|D|
4 ≤n≤( 1+|D|

4 )2

4νD(n)
√

n ·
(

37 · 1392|D|
4π2n

)2

e
−
r

4π2n
37·1392|D|

+
∑

( 1+|D|
4 )2

<n

4d4(n)
√

n ·
(

37 · 1392|D|
4π2n

)2

e
−
r

4π2n
37·1392|D| .

The second sum in the above Error is O
(
e−c1

√
|D|) for some c1 > 0, so it can be

ignored. We can, therefore, estimate the Error by breaking it into smaller sums
as follows:

|Error| ≤

4
∑

k<log2
1+|D|

4

372 · 1394

22k−2 · π4

∑
1+|D|

4 2k−1≤n

n≤( 1+|D|
4 )2k

νD(n)
√

n · exp

(
−

√
4π2n

37 · 1392|D|

)

+O
(
e−
√
|D|).

For each, k, we can apply Lemma 5 to the inner sum over n in the above. It
follows that

|Error| ¿ |D|
∑

k<log
1+|D|

4

2−k/2 ¿ |D|.

It immediately follows that for D sufficiently large, there exists a fixed, effec-
tively computable constant c such that

|Error| ≤ c · |D|
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as |D| → ∞. Combining this bound with (4.2), we conclude that

I∗D =
1

2πi

2+i∞∫

2−i∞

(
37 · 1392|D|

4π2

)1+s

Γ(1 + s)2φ(1 + s)
ds

s3
(4.7)

satisfies
|I∗D| < c · |D|. (4.8)

The integral for I∗D given in (4.7) can be evaluated by shifting the line of inte-
gration to the left. A double pole is encountered at s = 0. Actually the term
1/s3 contributes a triple pole, but the vanishing of φ(1+ s) at s = 0 reduces this
to a double pole. Because of the double pole and the known zero–free region for
the Riemann zeta function, it is not hard to show that there exists an effectively
computable constant c1 > 0 such that

|I∗D| > c1D log D. (4.9)

The inequalities (4.8) and (4.9) are contradictory for large D. Consequently, it
is not possible that h(D) = 1. QED.
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