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BRYAN BIRCH

1. Prologue: The Opportune Arrival of Heegner Points

Dick Gross and I were invited to talk about Heegner points from a historical
point of view, and we agreed that I should talk first, dealing with the period
before they became well known. I felt encouraged to indulge in some personal
reminiscence of that period, particularly where I can support it by documentary
evidence. I was fortunate enough to be working on the arithmetic of elliptic
curves when comparatively little was known, but when new tools were just be-
coming available, and when forgotten theories such as the theory of automorphic
function were being rediscovered. At that time, one could still obtain exciting
new results without too much sophisticated apparatus: one was learning exciting
new mathematics all the time, but it seemed to be less difficult!

To set the stage for Heegner points, one may compare the state of the theory
of elliptic curves over the rationals, E/Q for short, in the 1960’s and in the
1970’s; Serre [15] has already done this, but never mind! Lest I forget, I should
stress that when I say “elliptic curve” I will always mean “elliptic curve defined
over the rationals”.

In the 1960’s, we were primarily interested in the problem of determining the
Mordell-Weil group E(Q), though there was much other interesting apparatus
waiting to be investigated (cf Cassels’ report [7]). There was a good theory of
descent, Selmer and Tate-Shafarevich groups, and so forth: plenty of algebra.
But there was hardly any useful analytic theory, unless the elliptic curve had
complex multiplication; E(C) was a complex torus, beautiful maybe, but smooth
and featureless, with nothing to get hold of. One could define the L-function

LS(E, s) ∼
∏

p/∈S

(1− app
−s + p1−2s)−1

(where S is a set of “bad” primes), and Hasse had conjectured that this is an
analytic function with a good functional equation; but most of us could only
prove this when the curve had complex multiplication.
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By the 1970’s, everything had changed. Shimura showed that for modular
elliptic curves (that is, elliptic curves parametrised by functions on X0(N)) the
L-function automatically has a good functional equation. For Peter Swinnerton-
Dyer and myself, the turning point came when Weil wrote to Peter [A], stressing
the importance of the functional equation, which (Weil said) is of the form

Λ(s) = (2π)−sΓ(s)L(s) = C.N1−sΛ(2− s)

in all known cases (and, conjecturally, also in all unknown cases). Here, N is the
analytic conductor of the curve, conjecturally the same as the algebraic conductor
defined by Serre and Tate. Weil went on to point out that this conjecture of
Hasse’s was known for modular elliptic curves (Weil actually called them Eichler-
Shimura curves) as well as for curves with complex multiplication. Though Weil
didn’t actually say it explicitly, we knew that he was advising us to concentrate
on modular elliptic curves. The next year, Weil [20] proved that the functional
equations conjectured by Hasse for an elliptic curve over Q were valid only if the
curve was modular. From then on, it was clear that in all work that needed LE(s)
to be well behaved, one might as well assume that the elliptic curve E/Q under
consideration was modular. We referred (for instance, in letters [B] between
Peter and John Tate) to the hypothesis, implicit in Weil’s letter and paper, that
every elliptic curve over Q really was modular, as the “Weil conjecture”; years
later we learnt that this had been suggested much earlier, by Taniyama [18]. (I
hope these remarks, and the slightly earlier references, are a helpful amplification
of the very accurate account of the history of this conjecture given by Serre [15].)

Almost on cue, Heegner points came along, specifically on modular curves!
Suddenly, instead of being a featureless homogeneous space, E(C) was a highly
structured object, studded all over with canonically defined families of points,
with coordinates in known number fields. In studying E(Q), instead of searching
for structure, one had the much more hopeful task of analysing a situation where
there was almost too much of it.

And sure enough, the theorems rolled in, though not immediately. There was
about a ten year gap between the repopularisation of Heegner points and anyone
making proper use of them! That will be what Dick talks about. My job is to
tell you where these points came from.

2. Prehistory

In this context, “prehistory” means the latter half of the nineteenth cen-
tury; and it is summarised in Weber’s Algebra [19], one of the great books of
mathematics. I believe that Weber remained the most up-to-date book on the
arithmetic of modular functions until Shimura’s book [16] was published in 1971;
certainly it was the best I could find in 1966.

The story starts with the modular function, j(z), characterised by its values
at i and ρ, its pole at ∞ and its functional equation j(M(z)) = j(z) for any
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unimodular integral transformation z → M(z) := (az + b)/(cz + d); that is, j

is invariant by the modular group Γ(1). So j may be regarded as a function
of similarity classes of lattices: if Λ = Λ(ω1, ω2) is a lattice with basis (ω1, ω2)
then j(Λ) := j(ω1/ω2) does not depend on the choice of basis. If f(z) is another
function invariant by the modular group then f is a rational function of j, and if f

is invariant by a group commensurable with Γ(1) then f(z), j(z) are algebraically
dependent. In particular, if N is any natural number, the function jN (z) :=
j(Nz) is invariant by the conjugate

(
N 0
0 1

)
Γ(1)

(
N 0
0 1

)−1
of Γ(1), the intersection

Γ0(N) of these two conjugate subgroups has finite index in both, and so j, jN are
related by a polynomial equation FN (j(z), jN (z)) = 0 with FN (X, Y ) ∈ ZZ[X,Y ].
We recognise FN (X, Y ) = 0 as the modular curve Y0(N), the quotient of the
upper half plane by Γ0(N). Functions invariant by Γ0(N) are rational functions
of j and jN . If p is a prime, we have Kronecker’s congruence

Fp(X, Y ) ≡ (Xp − Y )(X − Y p) (mod p).

A beautiful discovery was the theory of “complex multiplication”. Suppose
that ω is a complex quadratic surd satisfying a primitive equation Aω2+Bω+C =
0 with A, B,C integers; the discriminant of ω is D(ω) := B2 − 4AC < 0. Then
j(ω) is an algebraic integer: the reason is that we can find ω′ in the lattice
Λ(1, ω) so that the lattices Λ(1, ω′) and Λ(1, Nω′) are the same for some N .
Further, the field K(D) := Q(ω, j(ω)) in which j(ω) lives depends only on D(ω),
not on ω, and the degree [K(D) : Q(ω)] is equal to the class number of the
ring R(D) := Z

[
D+D1/2

2

]
. In fact, one may regard the ideals A of this ring as

lattices, so it makes sense to evaluate j at an ideal class A, and then when A

runs through the classes of R(D) the values of j(A) are all conjugate. The field
K(D) is called the ring class field corresponding to the ring R(D); in particular,
if ∆ is a field discriminant (discriminant of the ring of integers of Q(∆1/2)) then
K(∆) is simply the class field of Q(∆1/2), and the fields K(s2∆) are extensions
of K(∆) of predictable degrees.

Complex multiplication was the beginning of class field theory, and nowadays
it is often treated as a particular case of the general theory. But that is really
the wrong way round: the theory presents us with the explicit field K(D) con-
structively, at the very start, and the beautiful “class field” properties of K(D)
are more easily obtained directly; it is the subject of Weber’s book. (The lan-
guage in Weber is now unfamiliar, so that the arguments seem more complicated
than they actually are. I should perhaps add that until the Brighton conference
in 1965, published as [8], the apparatus of class field theory was much more
forbidding than was Weber’s Algebra.)

The theory of complex multiplication as developed by Weber tells us about the
field j(A) lives in when A is an ideal of a given complex quadratic ring. When
one reads Weber, one sees that he aims to work in rather greater generality.
He considers other modular functions, invariant by various subgroups of Γ(1);
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for instance, he defines particular functions γ2, γ3, σ(x) which satisfy γ3
2 = j,

γ2
3 = j−1728, σ24−16 = σ8γ2 and (σ24−64)(σ24+8)2 = (γ3σ

12)2 (I use Heegner’s
later notation for these functions); and he proves by various contortions that if
D(ω) satisfies various congruence conditions then evaluating these functions at ω

gives values in the ring class field K(D), not as one might expect in some proper
extension. For instance, if (3, D) = 1 then γ2(ω) ∈ K(D), so j(ω) is a cube — e.g,
j(
√−2) = 8000, and j

(
1+
√−163
2

)
= −6403203; if D is odd then γ3(ω) ∈ K(D)

and if D ≡ 5(mod8) then σ6(ω) ∈ K(D). Unhappily, though Weber was aiming
for a more general theory, he seemed only to succeed in constructing a plethora
of other special cases. Many beautiful numbers were calculated, but everything
was far too particular, and the theory too complicated: it was too far ahead
of the rest of mathematics. New mathematical concepts were needed before a
civilised theory of automorphic functions could be developed.

Quite abruptly, the theory of modular functions dropped completely out of
fashion; Hecke did important work and so did Rankin (hence the title of this
workshop), but it is hardly an exaggeration to say that for half a century most
mathematicians hardly knew that the theory of modular functions had ever
existed.

3. Heegner

So we may jump directly to Heegner’s paper [11] of 1952. Heegner was a fine
mathematician, with a rather low-grade post in a gymnasium in East Berlin; he
clearly knew Weber’s book well. He was interested in the congruence number
problem: recollect that m is a congruence number if it is the area of a rightan-
gled triangle with rational sides (most people call this a Pythagorean triangle;
Heegner called it a Harpedonapten triangle). In his famous, very eccentrically
written, paper he begins with a historical introduction concerning the congru-
ence number problem, then he quotes various things from Weber and proves
some highly surprising theorems showing that the congruence number problem
is soluble for certain families of m; and then he suddenly (correctly but over
succinctly) solves the classical class number one problem (see also [1] and [17]).
Unhappily, in 1952 there was noone left who was sufficiently expert in Weber’s
Algebra to appreciate Heegner’s achievement.

Heegner proved that if p is a prime congruent to 5 or 7 modulo 8 then p is
a congruence number, and if p is congruent to 3 or 7 modulo 8 then 2p is a
congruence number. The proofs are similar, I will sketch his proof that 2p is
congruence when p ≡ 3(mod 8), since it is the simplest. A typical Pythagorean
triangle has sides 2rst, r(s2−t2) with rational r, s, t, so 2p is a congruence number
if there are rational r, s, t with 2p = r2st(s2 − t2). For this it is clearly enough
that the elliptic curve

E : −py2 = x(x2 − 64) (1)
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should have a nontrivial rational point, and for this it is enough that the Dio-
phantine equation

−pu2 = v4 − 64 (2)

is soluble in rational u, v. Referring to Weber, we see that if p ≡ 3(mod 8) there
is a solution of (2) with (u, v) ∈ K(−p) given by

√−pu = γ3σ
12/(σ24 + 8),

v = σ6, with the functions evaluated at ω = −3+
√−p
2 ; and it is easy to check

that u, v are real. If now p is prime, the class number is odd, so the classfield
K(−p) ∩ R has odd degree over the rationals. So to prove Heegner’s theorem
that twice every prime congruent to 3 modulo 8 is a congruence number, it is
enough to show that if (2) has a point in an extension of odd degree then it
has a rational point. Nowadays, this would be done by saying that a solution
of (2) gives a point of E in the nontrivial coset C of E(R)/2E(R), and adding
up an odd number of points of C gives a point in C, which has to be nontrivial.
Heegner uses a characteristically offbeat method; it is hardly known and has the
advantage of being good for explicit computation over Q, so I quote it:

Heegner’s Lemma. Suppose that f(X) is a quartic over a field L whose leading
coefficient is not a square in L, and that Y 2 = f(X) has a solution in a field M

with M/L an extension of odd degree d. Then Y 2 = f(X) has a solution in L.

If not, we may suppose that M is the extension of least odd degree in which there
exist x, y satisfying y2 = f(x). We may suppose that y ∈ L(x), else it would
need an extension of even degree, so L(x) = M , so x is a root of g(X) = 0 where
g is a polynomial over L of degree d ≥ 3; and y = h(x) where h is a polynomial
over L of degree s ≤ d− 1. We see that h2 − f is of degree max(4, 2d− 2) since
the leading coefficients cannot cancel; and h2−f is divisible by g, so h2−f = gk

where k is a polynomial over L of degree max(4−d, d−2) which is certainly odd
and less than d. But now if θ is a root of k(X) = 0, we see that x = θ, y = h(θ)
gives a point of y2 = f(x) in a smaller extension than M .

Heegner’s paper was written in an amateurish and rather mystical style, so
perhaps it was not surprising that at the time noone tried very hard to under-
stand it. It was thought that his solution of the class number problem contained
a gap, and though his work on the congruence number problem was clearly cor-
rect, noone realised that it contined the germs of a valuable new method. Sadly,
he died in obscurity.

4. Simplification and Generalisation

Looking back at old diaries and suchlike, I find that I first saw Heegner’s paper
in 1966 (a little later than Stark, he tells me); I had been told it was wrong,
but so far as I could see, it followed from results in Weber’s Algebra; and his
results on points on elliptic curves were exciting. It took a while to decide he
was right (one had to read Weber first, and I hadn’t even got good German) but



6 BRYAN BIRCH

this was achieved by the end of 1967 (see [2] and [3]). It took very much longer
to understand it properly, maybe until 1973; it was necessary to both simplify
and generalise. One needed to replace Heegner’s rather miraculous construction
of rational points on certain elliptic curves by a theorem that modular elliptic
curves, indeed modular curves, are born with natural points on them, defined
over certain classfields.

One also wanted to relate these points to something else – maybe to LE . I
persuaded Nelson Stephens (while he held an Atlas Fellowship) to compute the
functions γ2, γ3 for discriminants D up to 1580, prime to 6. (He computed for
even D too, but for the sake of exposition let us restrict to odd D.) We know
that for such discriminants D1/2γ3 and γ2 are in the class field K(D), so we get
points P (ω) on the curve

y2 = x3 − 1728.

(It was exceptionally easy to compute the points P (ω) as complex points, as one
simply integrated the differential η4(6z).) Summing over the ideal class group
of R(D), we get a rational point u(D, 1) of the curve

ED : Dy2 = x3 − 1728.

More generally, if we take χ as a genus character of the classgroup, then the sum∑
χ(ω)P (ω) gives a point u(e, f) of the curve

Ee : ey2 = x3 − 1728,

where the factorisation D = ef depends on χ. The computations were consistent
with a formula

ĥ(u(e, f)) = 2A3BL(Ef , 1)L′(Ee, 1)/
√
−3/ef Ω2

where the exponents A,B were explicit and not very interesting (but we did not
understand them at the time); note that u(e, f) was trivial when Ee(Q(

√
D))

had rank more than 1. We told people, the above formula is quoted from a 1973
Harvard seminar [C] (unfortunately Dick Gross was away in Oxford that term),
but as we did not understand what we were doing, we did not publish these
computations till years later [5]. Nowadays, we know that ey2 = x3−1728 is the
“wrong” model, which explains the unwanted factors 2A3B .

Meanwhile, we realised what one should be doing in a general case. One
wants points on a modular curve, with coordinates in smaller fields than one
would expect, and in the first instance one finds points on X0(N) itself rather
than on the elliptic curves it covers. Once one realises this, the problem becomes
fairly simple. X0(N) is the completion of the upper half plane factored by Γ0(N),
it is parametrised by j(z) and jN (z) = j(Nz), so we may take a typical point
of X0(N) as P (z) := (j(z), j(Nz)). If we take ω as a quadratic surd with
discriminant D, then j(ω) ∈ K(D) and usually Nω will have discriminant N2D

and j(Nω) ∈ K(N2D) so that P (ω) is defined over the field K(N2D) which is
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big and useless; but it is actually easy to persuade ω and Nω to have the same
discriminant. Simply take ω as a root of an equation of shape

NAω2 + Bω + C = 0,

then ω and Nω both have the discriminant D = B2 − 4NAC, and P (ω) ∈
X0(N)(K(D)). Note that there is enormous freedom in choosing D.

It is inelegant to evaluate functions at complex numbers, when really they
depend only on ideal classes. Fix N as a conductor, choose D as a negative
discriminant so that D = B2 − 4NAC is soluble, and write R(D) for the corre-
sponding quadratic ring Z

[
D+

√
D

2

]
; then there is a primitive ideal n of R(D) with

norm N , fix such an ideal. Then for every ideal a of R, P (n, a) := (j(a), j(na))
is a Heegner point of X0(N)(K(D)); we can go to and fro between the nota-
tions P (n, a) and P (ω)— to every pair of ideal classes (a, na) there corresponds
a coset (ω) modulo Γ0(N).

Suppose now that E is an elliptic curve over Q, covered by X0(N); write
φ : X0(N) → E for the covering map. Then φ(P (n, a)) is a point of E(K(D)),
and taking u(D, 1) :=

∑
(a) P (n, a) as the K(D)/Q(

√
(D) trace, we obtain

a point of E(Q(
√

D)). More generally, if χ is a genus character, u(e, f) :=∑
χ(a)φ(P (n, a)) is a point of E(Q(

√
e)), where e, f are determined by χ with

D = ef ; we may call the u(e, f) Heegner points too. The elliptic curve E will
correspond to a differential f(z) dz on X0(N), and then the period lattice Λ(E)
of E is easily calculable as

∫
H1(X0(N))

f(z) dz, and φ(P (ω)) can be calculated as∫ i∞
ω

f(z) dz ∈ E(C) = C/Λ(E). So we are in good shape for actually computing
the Heegner points u(e, f), at least their elliptic parameters.

This is essentially the point that had been reached in 1973–75. I lectured in
Rome, Paris, Kyoto, Moscow and Harvard; and the Rome talk was summarised
as a short note [4]; but there was very little immediate feedback ( I missed
Kurčanov’s paper [13] ). With hindsight, I should have realised that the theory
of Heegner points was a natural extension of Weber’s theory of complex multipli-
cation, worth developing for its own sake (and indeed the functorial properties of
Heegner points have turned out to be immensely valuable, in particular for Koly-
vagin’s Euler systems [12]); but I didn’t, and indeed was discouraged. There was
undue concentration on the original application of Heegner points, the construc-
tion of rational points on elliptic curves and (harder) proving that the points one
had constructed were non-trivial. I gave another method on these lines, Barry
Mazur (in [14]) gave one which worked beautifully for quadratic twists of X0(11),
and Dick Gross (in II of [9]; [9] was not published until after the discovery of the
Gross-Zagier theorem, but I think the ideas of II came a year or so earlier) gave
a third. Nowadays, people tend to say that there is an adequate criterion for
the nontriviality of the rational Heegner point using Gross-Zagier, “one just has
to check that L′(E, 1) 6= 0”; but I’ve never understood why computing L′(E, 1)
should be considered easier than the direct computation of the Heegner point as
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a point of E(C) = C/Λ (of course, Gross-Zagier shows that if one Heegner point
of a given curve is non-trivial then they almost all are).

The involvement of Dick Gross marked the turning point: at last someone
young enough and bright enough was thinking seriously about Heegner points!
It is the logical point at which to end this lecture, and hand over to him. But it
is happier to end with a bang rather than a whimper, so I need a final paragraph.

5. 1982

In 1981 and 1982, Nelson Stephens arranged a sabbatical year, and we planned
a massive computation of the Heegner points of modular curves, to see what they
would tell us. We actually did those computations [6], and very illuminating
the results would have been— but they were anticipated by far more exciting
developments.

In 1982, I got several letters from Dick (to which I replied with increasing
delight).

March 1st. Dick’s first letter [D] begins “I recently found an amusing method
to study Heegner points on J0(N).”

This included the method in II of [9]; it was exciting, because for the first
time it related the index of the Heegner point in E(Q) to the order of the Tate-
Shafarevich group. He conjectures a not-quite-correct form of Gross Zagier and
proves a tiny bit of it. This letter was only a foretaste of what was to come.

My reply [E] included “you seem to be opening so many doors that I’m almost
afraid to push”, which Dick correctly translated from British to American as
“Get shoving, you lucky so-and-so”.

May 14th. Dick’s second letter [F]; it was wonderful. “I noticed some really
amazing things, like the following:

1) The product L′(E(χ), 1)L(E(χ′), 1) is just the derivative at s = 1 of the
L-series L(E ⊗ IndQ

F χ, s) . . .
2) The L-series L(E⊗Indχ, s) has a beautiful integral expression by Rankin’s

method. . . ”
and so on for four beautiful pages, culminating with “So all one has to do is
prove the formula

L′(f ⊗ Indχ, s) = 〈yχ, yχ−1〉f .

∫

χ

ωf ∧ ωf/
√

DF . ”1

After that there was no going back! I replied, and got a third letter dated
September 17 asking for more data; could Nelson Stephens and I supply concrete

1Readers of the September 6 letter printed on page 17 of this volume will see that it does
not comment directly on the ideas of May 14th; instead it describes the results of relevant
computations (cf. [4]), and also makes detailed comments on a preliminary version of [9].
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evidence supporting the Gross-Zagier theorem-to-be? By that time, we had
plenty, so I supplied it.

On December 9th, I got the news “Dear Bryan, Working with Don Zagier, I
think I’ve assembled a proof . . . .” And the rest is in print.
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y2 = x3 − 1728e3”, in Séminaire de Théorie des Nombres, Paris 1981–2, edited by
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