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The Attenuated X-Ray Transform:

Recent Developments

DAVID V. FINCH

Abstract. We survey recent work on the attenuated x-ray transform, con-

centrating especially on the inversion formulas found in the last few years.

1. Introduction

The attenuated x-ray transform is a variant of the classical x-ray transform in

which functions are integrated over straight lines with respect to an exponential

weight. It arises as a model in single photon emission computed tomography

(SPECT) and in the study of the stationary linear single speed transport equa-

tion. Let a, f be continuous functions of compact support in R
n and let θ be a

unit vector. We define the divergent beam x-ray transform of a at x in direction

θ by

Da(x, θ) =

∫ ∞

0

a(x+ sθ) ds,

where the integration is with respect to arc length. The attenuated x-ray trans-

form of f is a function on the space of directed lines, whose value on the line l

with direction θ is given by

Paf(l) =

∫

l

f(y(τ))e−Da(y(τ),θ) dτ,

where y(τ) is an arc length parametrization of l . When the attenuation, a, is

identically zero, the attenuated x-ray transform reduces to the ordinary x-ray

transform. In the model of single photon emission tomography, the function f

represents the spatial density of emitters which are assumed to emit photons

isotropically. The function a is the linear attenuation coefficient, and so the

attenuated x-ray transform is supposed to represent the photon intensity at a

detector, collimated to accept only photons which have travelled along a specific

line. A useful survey of the physics can be found in [9]. (The density of emitters
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is called the activity distribution, and so some authors denote it by a, whereas

we use a for attenuation.)

In the plane, lines are often parametrized by their unit normal and directed

distance from the origin, as are hyperplanes in higher dimensions. In that case,

the attenuated x-ray transform is usually called the attenuated Radon transform

and given by

Raf(ω, p) =

∫

x·ω=p

f(x)e−Da(x,ω
⊥)dx, (1–1)

where ω⊥ = (− sinφ, cosφ) if ω = (cosφ, sinφ). The exponential Radon trans-

form in R
2 is given by

Eµf(ω, p) =

∫

x·ω=p

f(x)eµx·ω
⊥

dx.

If the attenuation a is a constant on a convex set containing the support of f , then

the attenuated Radon transform can be expressed in terms of the exponential

Radon transform, and vice versa. The theory of the exponential Radon (or x-

ray) transform is far more complete than that of the attenuated x-ray transform.

The attenuated x-ray transform itself is a special case of the generalized x-ray

transform, where the measure e−Da ds is replaced by a general measure µ(y, θ) ds.

Even in this setting, Boman [7] has produced an example of a smooth measure

on lines in the plane so that the associated generalized Radon transform has

non-trivial kernel. One may further pass from lines in Euclidean space to curves

on (or submanifolds of) a manifold. There has been a great deal of work done

on such generalized Radon transforms, and many open questions remain, but we

will only touch upon these extensions in this paper.

There are several inverse problems which can be posed for the attenuated x-ray

transform. The simplest, and the one which has recently been solved, is the linear

problem of recovering the activity f when the attenuation a is known. A much

harder problem is to determine both f and a from Paf . Given the resolution

of the linear inverse problem, this amounts to determining a from Paf . This is

called the identification problem, and it is easy to see that there are rotationally

invariant pairs of distinct a and f which give the same measurements, even when

a is constant. Nonetheless, some progress has been made if one assumes that f

has a special structure, e.g. a sum of delta functions, [28; 29] or a sum of point

measures and an Lp function, [6]. In the special case of the exponential Radon

transform in two dimensions, it has been proved that the identification problem

has a unique solution if and only if f is not radial, [39; 17]. While we won’t

discuss the identification problem further in this article, it is worth saying that

one of the tools used by Natterer is a set of consistency conditions for the range

of the attenuated transform. The range is a topic discussed in Section 4, and its

application to the identification problem has been an important motivation in

its study.
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The first uniqueness results which applied to the attenuated transform were

of local nature. Local uniqueness for a generalized Radon transform Rµ means

that each point x has a neighborhood Ux so that no non-trivial f supported in

Ux lies in the kernel of Rµ. The size of Ux usually depends on some norms of

the measure defining the generalized Radon transform, and of its derivatives.

Examples of such results can be found in [23; 24]. A method yielding stronger

local uniqueness results in the plane, as well as uniqueness for some problems

of integral geometry, was introduced by Mukhometov [25] in the mid 70’s. It

was based on energy type estimates for a boundary value problem for a partial

differential equation arising from a transport equation formulation of the integral

transform. The method of Mukhometov was adapted by the author, [13], in the

special case of the attenuated x-ray transform to prove uniqueness when the

product of the diameter of the support of the activity and the supremum norm

of the attenuation was not too large. Subsequently, Mukhometov’s method was

systematized and extended by Sharafutdinov and collaborators. An account may

be found in his book [35]. Sharafutdinov also considered, see for example [36], the

uniqueness problem for the attenuated x-ray transform on a class of Riemannian

manifolds with boundary, where the integrals are taken over geodesics of the

metric. The results are of the form that if the the integral over all geodesic

segments joining boundary points of a weighted average of the attenuation and a

geometric quantity depending on sectional curvatures is not too large, then the

x-ray transform is injective. To our knowledge, these papers of Sharafutdinov

are the only works on the attenuated x-ray transform on manifolds.

The theory for the exponential transform is fairly complete, but will not be

much discussed in this paper. The first analytic inversion formulas were found

in the late 1970’s, [5; 42]. Recently, [31], an inversion procedure when the data

is only collected for a range of 180◦ has been found (implementation is based

on truncation of a Neumann series); this paper also has a good bibliography on

inversion methods. The range was first characterized, in a complicated man-

ner, by Kuchment and L’vin, [19], with later simplifications and extensions by

Kuchment and coworkers appearing in [2; 1] and elsewhere. Their most recent

contribution, [12], discusses a differential equation range characterization for a

family of transforms which encompasses the exponential transform.

To the author’s knowledge, most practical reconstruction in SPECT is done

using iterative methods. In conventional x-ray tomography the greater speed and

provable convergence properties of analytic methods have generally outweighed

the benefits of iterative methods. In SPECT, where the photon flux is much

smaller, the statistics of the emission process must be taken into account. The

flexibility of iterative methods better allows them to account for these effects,

to incorporate prior information, and to be adapted to incomplete sampling

geometries. Of course, the price is that very little can be proved. The reader

who wants to pursue this side of the subject might start by scanning some recent
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issues of IEEE Transactions on Medical Imaging or Physics in Medicine and

Biology.

In the last five years, several exact inversion formulas have been found for

the attenuated x-ray transform, as well as some results on characterization of

the range of the transform. This paper is devoted to a survey of these results.

In section 2 we introduce some standard notations and review some background

results from complex analysis. In the next section, we sketch the methods of

proof of the various inversion formulas. Section 4 is devoted to the range results,

and the last section mentions some open problems.

2. Background and Preliminaries

Each of the inversion formulas makes use in some way of boundary values

of analytic functions defined in a region in the complex plane. We recall a

few results which we will need later. The first result is the Plemelj–Sokhozki

formulas for the boundary values of an analytic function defined by a Cauchy

integral. Suppose that L is a C1 oriented simple path or simple closed curve in

the complex plane, and that g is Hölder continuous of order α on L for some

positive α. Let G(z) be defined for z ∈ C \ L by the Cauchy integral

G(z) =
1

2πi

∫

L

g(t)

t− z
dt.

Then G is holomorphic in C \L and the following formulas hold. For a proof we

refer the reader to [26]. The existence of the principal value integrals is part of

the assertion.

Proposition 2.1. Let g, G, and L be as above. If t0 ∈ L and is not either

endpoint in the case when L is not closed , then the limit of G from the left of L

exists and is given by

G+(t0) = 1
2g(t0) +

1

2πi

∫

L

g(t)

t− t0
dt,

where the integral on L is taken in principal value sense. Similarly the limit from

the right exists and is given by

G−(t0) = − 1
2g(t0) +

1

2πi

∫

L

g(t)

t− t0
dt.

Corollary 2.1. Let g be Hölder continuous of order α > 0 on the unit cir-

cle, and let G be Cauchy integral of g, as above, for L the unit circle oriented

counterclockwise. Then for ω in the unit circle,

G+(−ω⊥) −G+(ω⊥) = 1
2 (g(−ω⊥) − g(ω⊥)) + 1

2πi p.v.

∫

S1

1

ω · θ g(θ) dθ. (2–1)
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Proof. Let ζ = eiσ where ω = (cos σ, sinσ) and w = eiψ for θ = (cosψ, sinψ).

Then, by the Plemelj–Sokhozki formula,

G+(−iζ)−G+(iζ) = 1
2 (g(−iζ)−g(iζ))+ 1

2πi
p.v.

∫

S1

(

1

w + iζ
− 1

w − iζ

)

g(w) dw.

Combining terms in the integral and using dw = iw dψ, the integral becomes

p.v.

∫

S1

2wζ

w2 + ζ2
g(eiψ) dψ.

But ω · θ = 1
2 (ζ̄w + w̄ζ), which in turn is equal to

w2 + ζ2

2wζ
, since both w and ζ

lie on the unit circle. ˜

For f a smooth function with compact support on R the Hilbert transform of f

is defined by the principal value integral

Hf(x) =
1

π
p.v.

∫

f(t)

x− t
dt.

The Hilbert transform extends to a bounded operator on Lp, for 1 < p <∞.

We shall use S(Rn) to denote the Schwartz space of infinitely differentiable

functions f on R
n which satisfy Dαf is O((1+ |x|)−k) for every natural number

k and for every derivative Dα. The space of oriented lines in the plane can

be parametrized by S1 × R either in x-ray coordinates where (θ, s) corresponds

to the line sθ⊥ + Rθ or in Radon coordinates in which (θ, s) corresponds to

sθ + Rθ⊥. In either case, we define the Schwartz space of the space of lines

to be the infinitely differentiable functions g on S1 × R such that ∂kθ ∂
j
sg(θ, s) is

O((1 + |s|)−n) for every n ∈ N.

We shall frequently use the complex differential operators ∂
∂z , also abbreviated

∂, and ∂
∂z̄ , abbreviated ∂̄, defined as follows. In R

2 with standard coordinates x

and y,
∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

With this notation, the Cauchy–Riemann equations for f = u + iv are written

simply as ∂̄f = 0. Let D be an open set in the plane with C1 boundary. If

g ∈ C1
0 (R2) and ζ ∈ D then

g(ζ) = − 1

π

∫

D

∂g

∂z̄
(x, y)

1

z − ζ
dx dy +

1

2πi

∫

∂D

g(x, y)
1

z − ζ
dz. (2–2)

There is an analogous formula with kernel (z̄ − ζ̄)−1 involving ∂g/∂z obtained

by conjugating the preceding equation after g is replaced by ḡ. If D is the entire

plane, this shows that (πz)−1 is a fundamental solution of the ∂̄ operator, and

(πz̄)−1 is a fundamental solution for ∂. For details see [18].

The function

h(θ, s) = 1
2 (I + iH)Ra(θ, s) (2–3)

plays a role in all of the inversion formulas. In this definition, I is the identity

operator, R is the Radon transform, and the Hilbert transform H is applied
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to Ra in the second variable. Its importance was first discovered by Natterer

[27; 28] in his work on consistency conditions for the range of the attenuated

transform. We have adopted his Radon parametrization rather than the x-ray

parametrization for that reason. Note that h(θ, x · θ) is constant on oriented

lines, but not independent of orientation since HRa(θ, x ·θ) is odd in θ. Natterer

proved the following lemma, with a different proof. A proof similar to the one

given here was found by Boman and Strömberg [8].

Lemma 2.1. The coefficients of the Fourier expansion in the angular variable of

the function h(θ, x · θ) −Da(x, θ⊥) are zero for negative or even index .

Proof. Since Ra(θ, x · θ) = Da(x,−θ⊥) +Da(x, θ⊥), it needs to be shown that

1
2 (Da(x,−θ⊥) −Da(x, θ⊥)) + i

2HRa(θ, x · θ)

has the desired property. Writing the Hilbert transform of the Radon transform

as an iterated integral, and changing to polar coordinates yields

HRa(θ, x · θ) = − 1

π
p.v.

∫

S1

1

θ · ωDa(x, ω) dω.

By the corollary to the Plemelj–Sokhozki relations (2–1) the combination is the

boundary value of an analytic function, and so has only non-negative Fourier

coefficients. Since it is also an odd function, the result follows. ˜

In fact more can be said: if
∑

k∈Z
mk(x)e

ikφ is the Fourier series expansion of

Da(x,−θ⊥), the Fourier expansion of h(θ, x · θ) −Da(x, θ⊥) is

∑

d>0

m2d+1(x)e
i(2d+1)φ.

This is the form (after a rotation) in which the expression enters in [4].

3. Uniqueness and Inversion

In this section we will present the inversion formulas found in the last five

years. They are all formulated in two dimensions, but that is sufficient, since in

higher dimensions one may restrict the full attenuated x-ray transform to lines in

a family of planes whose union is the full space. (Whether in higher dimensions

there exist other families of lines yielding inversion formulas is an open question.)

We will present the formulas in order of discovery. Several of the authors have

also stated uniqueness results for limited angle data, in which it is supposed that

the attenuated x-ray transform is known only for lines with directions lying in a

proper subset of the circle. The specific statements will be mentioned below.
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3.1. The approach of Arbuzov, Bukhgĕım, and Kazantsev. The first

result, due to Arbuzov, Bukhgĕım, and Kazantsev [4], is an application of the

theory of A-analytic functions developed by Bukhgĕım and collaborators. A

summary of this theory may be found in [11]. The analysis begins with a formu-

lation of the attenuated transform as a transport problem. Let f be the activity

distribution and a the attenuation, and let Ω be a bounded convex set in the

plane with smooth boundary. For a point x ∈ Ω, let τ±(x, θ) be the point of

intersection of the boundary and the ray from x in the direction ±θ. Let ∇
denote the gradient in space and consider the stationary transport equation

θ · ∇u(x, θ) + a(x)u(x, θ) = f(x). (3–1)

This equation may be integrated along lines in direction θ to obtain

e−Da(y,θ)u(y, θ)

∣

∣

∣

τ+(x,θ)

τ−(x,θ)
=

∫ τ+

τ−

e−Da(y,θ)f(y) ds(y), (3–2)

where the integral extends over the segment of the line through x in direction

θ lying in Ω. The right hand side is the attenuated x-ray transform of f and

a restricted to Ω. Thus knowing the boundary values of a solution of (3–1)

determines the attenuated x-ray transform (since a is assumed known). Since

(3–1) is a parametrized family of ordinary differential equations, the forward

problem does not have a unique solution without some specification of initial

conditions. For example, if the incoming flux is given, u(x, θ) = u0(x, θ) for

x ∈ ∂Ω and θ · ν(x) < 0, for the ν(x) the outer normal at x, then the solution is

unique. Then supposing the attenuated transform is known, (3–2) completes the

specification of the boundary values of u. The questions of uniqueness and inver-

sion of the attenuated x-ray transform are then transferred to the questions of

uniqueness and inversion for f from boundary values for the transport equation.

We will now present a proof of the inversion formula of Arbuzov, Bukhgĕım,

and Kazantsev. Their proof is an application of the theory of A-analytic func-

tions, but we have chosen to avoid them by working with Fourier series expan-

sions directly. This loses the elegance and some of the power of the approach

taken by these authors, but it shows clearly how easily the result may be attained.

One word of caution: we have stayed with the conventions of Fourier analysis

and write g(θ) ∼ ∑

k∈Z gke
ikφ whereas Arbuzov, Bukhgĕım, and Kazantsev write

∑

gke
−ikφ.

Returning to the transport equation, it is clear that one may use any non-

zero multiple of e−Da(x,θ) as an integrating factor. Let b(x, θ) = h(−θ⊥,−x ·θ⊥),

where h is given in (2–3). Although it is not needed in what follows, a calculation

similar to that in (2.1) shows that b(x, θ) = 1
2 (I − iH)Pa(θ, x · θ⊥), where Pa is

the parallel beam transform of a. Then b is constant on lines in direction θ and so

eb(x,θ)−Da(x,θ) is also an integrating factor. Let v(x, θ) = eb(x,θ)−Da(x,θ)u(x, θ).

Then v satisfies the equation θ · ∇v = f(x)eb(x,θ)−Da(x,θ), which may be written
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in complex form, identifying (x1, x2) ∈ R
2 with z = x1 + ix2 and setting θ =

(cosφ, sinφ), as

e−iφ
∂v

∂z̄
+ eiφ

∂v

∂z
= f(z)eb(z,θ)−Da(z,θ). (3–3)

By Lemma 2.1, the Fourier coefficients of b(x, θ)−Da(x, θ) are zero for negative

(or even) index, and so the Fourier coefficients of eb(x,θ)−Da(x,θ) are zero for neg-

ative index. Thus if v =
∑

vke
ikφ is substituted in (3–3) and Fourier coefficients

are equated, there results the system of equations

∂vk+1

∂z̄
+
∂vk−1

∂z
=

{

0 for k < 0,

f(z)γk for k ≥ 0,
(3–4)

where the expansion of e−G, with G = Da(x, θ) − b(x, θ), is
∑

k≥0 γke
ikφ.

The aim of the following calculations is to show that each vk for k ≤ 0, can be

expressed in terms of the boundary values of vj for j ≤ k. Since these are given in

terms of u and e−G on the boundary, and since for k ≤ 0, the Fourier coefficient

uk of u is the k-th Fourier coefficient of eGv which is expressible in terms of the

γl and the Fourier coefficients vj for j ≤ k, we can determine everywhere u−1

and u0. These determine f by

2Re
∂u−1

∂z
+ a(z)u0 = f(z),

which results from writing the transport equation θ · ∇u + au = f in complex

form, and separating Fourier coefficients, as was worked out above for v. Here

it is also used that u is real valued, and so ∂u−1 + ∂̄u1 = 2Re ∂u−1.

Let

ρk(x, φ) =

∞
∑

j=0

vk−2j(z)e
i(k−2j)φ.

We assume that Ω is an open bounded convex set with C1 boundary, and that

ρk is C1 in Ω and continuous on the closure. Let ζ ∈ Ω and for each φ let

l(φ) be the length of the ray from ζ to the boundary in direction eiφ. Denote

by w(φ) = ζ + l(φ)eiφ the point where the ray meets the boundary. Then, for

k ≤ 0,

ρk(w(φ), φ) − ρk(ζ, φ) =

∫ l

0

∂ρk
∂s

(ζ + seiφ, φ) ds

=

∫ l

0

(

∂ρk
∂z̄

e−iφ +
∂ρk
∂z

eiφ
)

ds

=

∫ l

0

∞
∑

j=0

∂vk−2j

∂z̄
ei(k−2j−1)φ +

∞
∑

j=0

∂vk−2j

∂z
ei(k−2j+1)φ ds
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=

∫ l

0

∂vk
∂z

ei(k+1)φ +

∞
∑

j=0

(

∂vk−2j

∂z̄
+
∂vk−2j−2

∂z

)

ei(k−2j−1)φ ds

=

∫ l(φ)

0

∂vk
∂z

ei(k+1)φ ds,

where the series in the second to last integral is zero by (3–4). From this vk(ζ)

is found:

vk(ζ) =
1

2π

∫ 2π

0

ρk(ζ, φ)e−ikφ dφ

=
1

2π

∫ 2π

0

(

ρk(w(φ), φ) −
∫ l(φ)

0

∂vk
∂z

ei(k+1)φ ds

)

e−ikφ dφ

=
1

2π

∫ 2π

0

ρk(w(φ), φ)e−ikφ dφ− 1

2π

∫ 2π

0

∫ l(φ)

0

∂vk
∂z

1

se−iφ
s ds dφ

=
1

2π

∫ 2π

0

∞
∑

j=0

vk−2j(w(φ), φ)e−2ijφ dφ− 1

2π

∫

Ω

∂vk
∂z

1

z̄ − ζ̄
dA. (3–5)

By the conjugate form of (2–2),

− 1

2π

∫

Ω

∂vk
∂z

1

z − ζ
dA = 1

2vk(ζ) +
1

4πi

∫

∂Ω

vk(w)
1

w̄ − ζ̄
dw̄.

From w(φ) = ζ + l(φ)eiφ,

e−i2φ =
w − ζ

w − ζ
, dφ =

1

2i

(

1

w − ζ
dw − 1

w̄ − ζ̄
dw̄

)

.

Substituting these into (3–5) and gathering terms gives

vk(ζ) =
1

2πi

∫

∂Ω

(

dw
1

w − ζ

∞
∑

j=0

vk−2j(w)
(

w − ζ

w − ζ

)j

−dw̄ 1

w̄ − ζ̄

∞
∑

j=1

vk−2j(w)
(

w − ζ

w − ζ

)j

.

)

(3–6)

Recalling that v = e−Gu and that we have reversed the indexing of [4], this is

the k-th component of the equation in Theorem 4.3 of [4].

3.2. Novikov’s inversion formula. In the late spring of 2000, Novikov

circulated a manuscript with an inversion formula for the attenuated transform.

A revised version with some additional results was written in the fall and has

now appeared in [33]. A published announcement with an outline of the proof

appears in [32]. The paper makes heavy use of the boundary value distributions

(x ± i0)−1 and becomes notationally dense when operators are dressed with ±
and direction subscripts. We will first present Novikov’s formula in his own

notation, and then modify the notation to accord with that used in this paper.

Suppose that a and f are Hölder continuous of order α, for some α ∈ (0, 1),
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that there is an ε > 0 such that they are O(|x|−1−ε) as |x| → ∞ and that

sup0<|y|≤1 |y|−α
∣

∣f(x + y) − f(x)
∣

∣ is also O(|x|−1−ε), and similarly for a. Then,

using the notations Dθu(x) := Du(x, θ), P⊥
θ u(s) := Pu(θ, sθ⊥), P⊥

a,θu(s) :=

Pau(θ, sθ
⊥) and

H±v(s) =
1

π

∫

R

v(t)

s± i0 − t
dt

and

exp
(

±(2i)−1H∓P
⊥
θ a

)

v(s) = exp
(

± (2i)−1H∓P
⊥
θ a(s)

)

v(s),

Novikov’s formula reads

f(x) = − 1

4π

(

∂

∂x1
− i

∂

∂x2

)
∫

S1

ϕ(x, θ)(θ1 + iθ2) dθ,

where

ϕ(x, θ) = exp
(

−D−θa(x)
)

m(x · θ⊥, θ),
with m given by

m(s, θ) = m+(s, θ) −m−(s, θ)

= (2i)−1 exp
(

−(2i)−1H+P
⊥
θ a(s)

)

H+

(

exp
(

(2i)−1H−P
⊥
θ a

)

P⊥
a,θf

)

(s)

−(−2i)−1 exp
(

(2i)−1H−P
⊥
θ a(s)

)

H−

(

exp
(

−(2i)−1H+P
⊥
θ a

)

P⊥
a,θf

)

(s).

(3–7)
It may be easily shown that

− 1

2i
H+ = 1

2 (I + iH),
1

2i
H− = 1

2 (I − iH),

which is useful when trying to compare Novikov’s development with the work of

others. Further since a and f are real, m+ and m− are conjugate, so m is pure

imaginary.

Novikov’s proof is also based on reformulation of the problem as a scattering

problem for the transport equation

θ · ∇u+ au = f. (3–8)

Let ψ+ = ψ+(x, θ) be the solution of the transport equation satisfying

lim
s→−∞

ψ+(x+ sθ, θ) = 0.

Then lims→∞ ψ+(x + sθ, θ) = Paf(θ, x · θ⊥) which identifies the attenuated

transform as scattering data. Let Σ be the complex quadric in C
2 given by

Σ = {(θ1, θ2) ∈ C
2 : θ21 + θ22 = 1}. (This intersects the real space in the unit

circle.) Novikov shows that for θ = (θ1, θ2) ∈ Σ \ S1 there is a unique solution ψ

of the complex transport equation

θ · ∇ψ(x, θ) + a(x)ψ(x, θ) = f(x), x ∈ R
2,
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which satisfies ψ(x, θ) → 0 as |x| → ∞. An explicit formula is given (see (3–11)

below). It is not remarked by Novikov, but simplifies some of his later results,

to observe that

ψ̄(x, θ) = ψ(x, θ̄), (3–9)

which follows directly from conjugating the differential equation and using the

uniqueness assertion. The next step is to study the limit of these solutions as

θ tends to the real space. (This is the most delicate part of the analysis.) It is

proved that for θ ∈ S1, the limits

ψ±(x, θ) = lim
0<τ→0

ψ(x, ω(±τ))

for ω(τ) =
√

1 + τ2θ+iτθ⊥ with τ real and the positive square root, exist and are

continuous, and satisfy the real transport equation (3–8), with initial conditions

lim
s→−∞

ψ±(x+ sθ, θ) = m±(x · θ⊥, θ),

where m± were defined in (3–7). It follows from (3–9) that ψ+ and ψ− are con-

jugate. The difference ψ+ −ψ− is then a solution of the homogeneous transport

equation with value at −∞ equal to m+ −m−. Since

ϕ(x, θ) = e−Da(x,−θ)(m+ −m−)

is the unique such solution, it must hold that

ϕ(x, θ) = ψ+ − ψ−.

(This is the ϕ of the inversion formula.) Next the quadric Σ is seen to have the

holomorphic parametrization θ(λ), given by

θ1 =
λ+ λ−1

2
, θ2 =

λ− λ−1

2i
,

for λ ∈ C \ {0}. Moreover, the unit circle T ⊂ C corresponds to the unit circle

S1 ⊂ R
2, with the interior of the unit circle in C mapping to the the subset of Σ

parametrized above by ω(τ), for τ > 0 (and all θ). It is easy to check that θ(λ)

also satisfies

θ(1/λ̄) = θ̄(λ). (3–10)

It is then shown that for each x ∈ R
2, ψ(x, θ(λ)) is holomorphic in λ for λ ∈

C\{0∪T}, and that the limit from inside the circle (resp. from outside the circle)

correspond to the boundary values ψ±, respectively. The analyticity results from

the specific form of the solution of the complex transport equation, referred to

above. Here it is appropriate to indicate the form: for θ = θ(λ) one has

ψ(x, θ(λ)) =

∫

R2

e−Gθ(λ)a(x)G(x− y, θ(λ))eGθ(λ)a(y)f(y) dy, (3–11)
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where (x1, x2) ∈ R
2 is identified with z = x1 + ix2 ∈ C,

G(z, θ(λ)) =
sgn(1 − |λ|)

2πi(i/2)(λz̄ − z/λ)
,

for λ 6= 0, λ /∈ T , and Gθa(x) is the convolution
∫

G(x−w, θ)a(w) dw. Moreover,

from (3–9) and (3–10),

ψ(x, θ(λ)) = ψ̄(x, θ(λ̄−1)),

so the Laurent expansion in the punctured circle determines that in the exterior

of the circle, and vice versa. Looking at the kernel, G(x, θ(λ)), it is clear that

the expansion around λ = 0 has the form, with ζ = y1 + iy2 and z = x1 + ix2

ψ(x, θ(λ)) = λ

∫

f(ζ)

π(z − ζ)
dy +O(λ2),

and so the expansion at infinity is

ψ(x, θ(λ)) = ψ̄(x, θ(λ̄−1)) = λ−1

∫

f(ζ)

π(z − ζ)
dy +O(λ−2).

Using this last relation and taking the limit as the contour shrinks to the unit

circle we get

∫

f(ζ)

π(z − ζ)
dy =

1

2πi

∫

T

ψ−(x, θ(λ)) dλ

= − 1

2πi

∫

T

(ψ+(x, θ(λ)) − ψ−(x, θ(λ))) dλ

= − 1

2π

∫

S1

(ψ+(x, θ) − ψ−(x, θ))(θ1 + iθ2) dθ,

which finishes the proof of the formula, since (πz̄)−1 is a fundamental solution

for ∂.

Since the constant terms of the Laurent expansions inside and outside the

circle are both zero, a similar chain of equalities shows that

0 =
1

2πi

∫

T

(ψ+ − ψ−)
dλ

λ
=

1

2π

∫

S1

(ψ+(x, θ) − ψ−(x, θ)) dθ. (3–12)

This is a consistency condition which will be used later.

Novikov proves a limited angle theorem assuming that f is continuous with

compact support. If Paf(θ, s) is known for all s ∈ R and θ in a set of positive

length, then f is uniquely determined.

The inversion formula of Novikov has been implemented by Kunyansky, [22],

with further particulars in [21]. Kunyansky also shows that in the case of con-

stant attenuation Novikov’s formula reduces to the inversion formula for the

exponential transform given by Tretiak and Metz, [42].
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3.3. The results of Natterer and of Boman and Strömberg. Natterer,

[30], works with the attenuated Radon transform, (1–1), and proves the inversion

formula

f(x) =
1

4π
Re div

∫

S1

θeDa(x,θ
⊥)e−h(θ,x·θ)H(ehRaf)(θ, x · θ) dθ,

where h is given by (2–3) and the Hilbert transform H is applied to ehRaf in

the second variable. This formula can be shown to be equivalent to Novikov’s

formula after changing from x-ray to Radon coordinates and taking account of

the parities of the constituent functions under change of sign in the argument

(these occur since Raf(θ, s) = Paf(θ⊥,−s)). Natterer’s proof is very economical:

our prose description will be nearly as long as his full exposition.

It begins with a few lemmas. The first is the result given above as (2.1) on

the Fourier coefficients of u(x, θ) = h(θ, x ·θ)−Da(x, θ⊥), and the second, which

evaluates the integrals
∫ 2π

0
θ
x·θe

ilφ dφ (with θ = (cosφ, sinφ)), is easily derivable

from (2–1). The proof of the main theorem has two steps. The first expresses

the integrand in the inversion formula as

θe−u(x,θ)H(ehRaf)(θ, x · θ) =
1

π

∫

R2

f(y)
θ

(x− y) · θ e
u(y,θ)−u(x,θ) dy

(there are two minor misprints in his equation (2.4)) and then shows that

Re

∫

S1

θ

(x− y) · θ e
u(y,θ)−u(x,θ) dθ = 2π

x− y

|x− y|2

which is a multiple of a fundamental solution of the divergence operator. The

proof of this formula follows by expanding eu(y,· )−u(x,· ) in Fourier series, applying

the lemma on the evaluation of the integrals
∫

θ
x·θ e

ilφ dφ, and observing that only

the l = 0 term of the Fourier expansion contributes to the real part. Natterer

does not formulate a precise theorem on the necessary regularity of f , but notes

that the formula does hold pointwise for f ∈ C1
0 (R2). The conditions on a

are even less specific: only that it is sufficiently smooth and of sufficiently rapid

decay at infinity. Natterer has implemented the formula and presents an example

reconstruction.

The work of Boman and Strömberg, [8], does not yet have its final form, so

we can only indicate the preliminary results given by Boman in lecture. First

they prove an inversion formula for continuous functions with compact support

in an open set Ω for the generalized Radon transform

Rρf(θ, p) =

∫

x·θ=p

f(x)ρ(θ, x) ds, (θ, p) ∈ S
1 × R,

for complex measures ρ(x, θ) such that for each x ∈ Ω, ρ(x, · ) extends to a

continuous nowhere zero function on the unit disk which is analytic on the open

disk, ρ is Hölder continuous on Ω × T , and such that arg ρ(x, θ) is constant on
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each oriented line x · θ = p for x ∈ Ω. With m(x) = 1
2π

∫

ρ(x, θ) dθ the (angular)

mean value of ρ, assumed to be real, the inversion formula takes the form

f(x) =
1

4πm(x)
div

(

m(x)Re

∫

S1

θ(HRρf)(θ, x · θ) 1

ρ(x, θ)
dθ

)

.

They then observe that their argument can be applied to any measure ρ0 for

which there is a nowhere zero function τ , constant on oriented lines, such that

ρ = τρ0 satisfies the conditions above. They prove that if ρ0 = eq is real, and

q(x, θ) = w(x, θ)+u(x, θ) for real u,w where u and the conjugate function w̃ are

constant on all oriented lines x·θ = p in Ω, then the trick applies with τ = e−u+iw̃.

It is further shown that for the attenuated transform, where q = −Da(x, θ⊥), this

kind of decomposition holds, so their inversion formula applies. They also prove

a limited angle theorem which states that for the generalized Radon transform

Rρ, with ρ satisfying the conditions above, if Rρf(θ, p) = 0 for all p ∈ R and θ in

an non-empty open subset of the circle for some compactly supported continuous

function f , then f must be identically zero.

3.4. Additional remarks. We add a few remarks on the preceding formulas

and cite a new paper that has just come to our attention.

Remark 3.1. The analysis of the stationary transport equation (3–1) is an

important ingredient in the study of inverse problems for the stationary transport

equation with scattering. This seems to have the motivation for much of the work

by the Novosibirsk group. Indeed, it was in this context that (to our knowledge)

it was first observed, see [3], that local uniqueness for the attenuated transform

in dimension two implies global uniqueness for compactly supported activity

distributions in higher dimensions. We refer the reader to the recent thesis and

paper by Tamasan, [41; 40], for applications of the recent inversion formulas

for the attenuated transform to inverse problems for the more general transport

equations, and for further references.

Remark 3.2. The results of Natterer and of Boman and Strömberg provide more

direct proofs of inversions formulas of Novikov type, but they clearly owe their

formulation to the work of Novikov. It is not hard to modify Natterer’s Fourier

series expansion to arrive at the fundamental solution of ∂ instead of working

with the real part of the vector adjoint to arrive at a fundamental solution for

the divergence operator.

Remark 3.3. The inversion procedure given by Arbuzov, Bukhgĕım, and

Kazantsev is fairly complicated, because it requires evaluating u0 and u−1, both

of which require the full sequence of {vk} for k ≤ 0. One explanation may be

that the method is underspecified. The derivation leading up to (3–6) holds no

matter what choices are made in (3–2) to complete the boundary values (e.g.

zero incoming or some other), and it would be no surprise if some choice might

lead to a more efficient inversion formula.
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Remark 3.4. In a recent work, [10], which came to the author too late for

a full treatment in this paper, A. A. Bukhgeim and Kazantsev have found an

inversion formula adapted to divergent beam geometry, where it is supposed

that the attenuation and activity are supported in the unit disk, and lines are

parametrized by direction and point of intersection with the unit circle. The

formula makes use of the circular Hilbert transform Γ, given by

Γq(φ) =
1

2π

∫ 2π

0

cot(φ− α)

2
q(α) dα,

with respect to both direction at points on the measurement circle, and with

respect to position on the measurement circle. Assuming that f is square inte-

grable on the unit disk and that a is C2 on the closed unit disk, they state and

outline the proof of the following:

f(z) =
∂

∂z̄

i

π

∫ 2π

0

e−iφe−m(z,φ) Im
(

e−2(Da)+(γ(z,φ),φ)v∗(γ(z, φ), φ)
)

dφ,

where for t in the unit circle,

v∗(t, φ) = (I + iΓ)(v( · , φ) − 1
2v(γ( · , φ+ π), φ))(t)

with v(t, φ) = e−2(Da)+(t,φ)Daf(t, φ). Here the notations are θ = (cosφ, sinφ),

m(z, φ) = Da(z,−θ), γ(z, φ) is the point of intersection of the unit circle with

the ray from z in the direction −θ, Daf(z, φ) =
∫ 0

−∞
f(z + sθ) exp(−Da(z +

sθ,−θ)) ds, and (Da)+(z, φ) = 1
2 (I − iΓ)modd(z, · )(φ), where modd is the odd

part of m(z, φ) with respect to the angular variable.

4. Range Characterization

Prior to presenting what is known about range characterization for the attenu-

ated x-ray transform, it is valuable to recall what is known for the classical x-ray

and Radon transforms. The results are most easily stated for the Radon trans-

form. The chief theorem, which was first proved fully by Helgason, [16], gives

a characterization of the range of the Radon transform on S(Rn), the Schwartz

space of smooth rapidly decreasing functions on R
n.

Theorem 4.1. A function g ∈ S(Sn−1 × R) is in the range of the Radon

transform on S(Rn) if and only if

(i) g is even, that is, g(θ, p) = g(−θ,−p) for all (θ, p) ∈ Sn−1 × R, and

(ii) for each natural number m the function pm(θ) =
∫

R
g(θ, p)pm dp is the re-

striction to Sn−1 of homogeneous polynomial on R
n.

The last set of conditions are called the moment conditions. They also en-

ter what are called the Paley–Wiener type theorems for the Radon transform,

which characterize the range of the transform on various spaces of compactly
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supported functions. There are analogous results on the range of the classical x-

ray transform in higher dimensions, [37], but also characterizations of the range

as the solution space of certain differential equations.

In the mid-80’s, Solmon, [38], gave a very nice extension of the range theorem,

which said that if g is an even smooth function of rapid decay on Sn−1 × R,

then g is the Radon transform of a function f which is O(|x|−n), moreover f is

O(|x|−n−m−1), m ≥ 0, as |x| → ∞ if and only if g satisfies the moment conditions

through order m. Furthermore, any k-th order derivative of f is O(|x|−n−1−m−k)

as |x| → ∞.

For the attenuated Radon transform, the first result found was an analogue

of the moment conditions. Natterer, [27; 28], showed the following,

Theorem 4.2. Let k > m ≥ 0 be integers. If g = Raf for a, f ∈ S(R2) then

∫

R

∫ 2π

0

pmeikφ+1/2(I+iH)Rag(ω, p) dp dω = 0,

where as usual , ω = (cosφ, sinφ). (Additional conditions result from taking the

conjugate, since g is real .)

The proof follows from writing out the integral defining the attenuated Radon

transform, applying Fubini’s theorem, and (2.1) on the vanishing of the negative

Fourier coefficients of eh(x,x·θ)−Da(x,θ
⊥). About ten years later, Kuchment and

L’vin gave a characterization of the range of the exponential Radon transform,

[19]. One consequence was that Natterer’s conditions are not sufficient to char-

acterize the range, even for the case of constant attenuation. Something which

was obviously lacking was the analogue of the evenness condition in the classical

range theorem. Novikov, [33; 32] found such a condition, and has proved, [34],

the following theorem.

Theorem 4.3. Let a, g be in the Schwartz space S(S1 × R) and let g satisfy

Re

∫

S1

e−Da(x,−θ)e1/2(I+iH)Pa(θ,x·θ⊥)H+(e1/2(I−iH)Pa(θ,· )g(θ, · )) (θ⊥ · x) dθ = 0

for x ∈ R
2. (4–1)

Then there is a C∞ function f such that f and all its derivatives are O(|x|−2)

as |x| → ∞ with Paf = g.

The necessity of (4–1) was established in (3–12). The scheme of the proof is

to define f by Novikov’s inversion formula, using g in place of Paf , and then

to prove that the resulting function has the required decay and that its image

under the attenuated transform is g. In the case of the classical x-ray transform,

(4–1) takes the form

0 =

∫

S1

Hg(θ, x · θ⊥) dθ for all x ∈ R
2.



THE ATTENUATED X-RAY TRANSFORM 63

It is obvious that if g = Pf then the conditions are satisfied, for then Pf is even

and so HPf(θ, x · θ⊥) is odd in θ, but the converse takes some work. It suffices

to prove that under the hypothesis 0 =
∫

S1 Hg(θ, x · θ⊥) dθ the function g must

be even, for one can then apply Solmon’s theorem, but the author has not found

a simple proof of this.

Arbuzov, Bukhgĕım, and Kazantsev give a different range result, whose con-

sequence and interpretation in the context of the attenuated transform have not,

to the author’s knowledge, been fully worked out. (Kuchment has some ideas on

the matter. A discussion, along with many other matters related to the present

paper, can be found in [20].) Recalling the Plemelj–Sokhozki relations from Sec-

tion 2, one sees that a Hölder continuous function g on the boundary of a simply

connected domain with smooth boundary is the boundary value of a function

analytic in the domain (its Cauchy integral) if and only if the principal value

integral over the boundary is one-half the value of the function on the boundary.

The same result holds for Hölder continuous functions on the boundary, taking

values in Xm+2 of the scale of Banach space defining A-analyticity. (See [4] for

further explanation of the following.) Since the transmuted function e−Gu is

A-analytic, if the boundary values are Hölder continous, they must be equal to

twice the principal value integral over the boundary.

5. Open Problems

In the author’s opinion, the “most wanted” of the open problems is to find an

explicit set of consistency conditions which characterize the range of the atten-

uated transform on functions of compact support or rapid decay. As mentioned

above, Novikov has proved the necessity of (4–1), and its sufficiency for a rapidly

decaying smooth function on the space of lines to be the attenuated transform

of a function with quadratic decay. Natterer’s conditions, (4.2), are also neces-

sary range conditions for functions of rapid decay. It is unknown whether the

union of these conditions is sufficient. There are some implicit conditions, such

as the function produced by the inversion formula has the desired property, but

these do not seem useful for application elsewhere, such as to the identification

problem. An allied question would be the existence of a support theorem for the

attenuated transform. If f is continuous and decays faster than any reciprocal

power of |x| and Paf(l) = 0 for every directed line l disjoint from some compact

convex set K, is f supported in K?

Inversion from partial data. In the plane, Novikov and Boman–Strömberg

proved uniqueness for compactly supported activity distributions when the line

directions are restricted to a non-empty open subset of the circle. Natterer has

posed the question of whether there exists a stable inversion formula when the

directions comprise half the circle. If such could be found, it could help make an-

alytic methods more competitive with iterative methods in clinical applications.
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The analogous problem for the exponential transform has been treated by Noo

and Wagner in [31].

In higher dimensions, for what submanifolds of the manifold of lines can in-

version formulas be derived? Gel’fand, Gindikin, and Shapiro [14] have given

conditions on curve families with densities in the plane for admissibility, and

for curve families in higher dimensions this was extended in [15]. These papers

are concerned with a geometric condition (admissibility) which corresponds to

a certain differential form being closed. In complex space this can lead to local

inversion formulae, though not in real space. For the attenuated transform one

might start by making a similar analysis on submanifolds of oriented curves.

As mentioned in the introduction, there has been a lot of work on generalized

Radon transforms on manifolds, but very little specifically about the attenuated

x-ray transform. In particular, the uniqueness problem remains open. One might

hope also for an inversion formula, perhaps under more stringent hypotheses.
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[23] M. M. Lavrent’ev and A. L. Bukhgĕım, On a class of problems of integral geometry,
Dokl. Akad. Nauk SSSR 211 (1973), 38–39, Engl. trans. in Soviet Math Dokl., 14

(1973).

[24] A. Markoe and E. T. Quinto, An elementary proof of local invertibility for

generalized and attenuated Radon transforms, SIAM J. Math. Anal. 16 (1985), 1114–
1119.



66 DAVID V. FINCH

[25] R. G. Mukhometov, The problem of recovery of a two-dimensional Riemannian

metric and integral geometry, Dokl. Akad. Nuak SSSR 232 (1977), 32–35, English
trans. in Soviet Math. Dokl. 18 (1977), pp. 27–31.

[26] N. I. Muskhelishvili, Singular integral equations, Noordhoff, Groningen, 1953.

[27] F. Natterer, The ill-posedness of Radon’s integral equation, Symposium on Ill-
Posed Problems: Theory and Practice, Newark, DE, 1979.

[28] , The identification problem in emission computed tomography, Mathemati-
cal aspects of computerized tomography (Oberwolfach, 1980), Springer, Berlin, 1981,
pp. 45–56. MR 84m:92008

[29] , Computerized tomography with unknown sources, SIAM J. Appl. Math.
43 (1983), no. 5, 1201–1212. MR 86i:92011

[30] , Inversion of the attenuated Radon transform, Inverse Problems 17 (2001),
113–119.

[31] F. Noo and J.-M. Wagner, Image reconstruction in 2D SPECT with 180
◦ acquisi-

tion, Inverse Problems 17 (2001), 1357–1371.

[32] R. G. Novikov, Une formule d’inversion pour la transformation d’un rayonnement

X atténué, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 12, 1059–1063. MR
2002e:44003

[33] , An inversion formula for the attenuated X-ray transformation, Ark. Mat.
40 (2002), 145–167.

[34] , On the range characterization for the two-dimensional attenuated X-ray

transformation, Inverse Problems 18 (2002), 677–700.

[35] V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht, 1994. MR
97h:53077

[36] , On emission tomography of inhomogeneous media, SIAM J. Appl. Math.
55 (1995), no. 3, 707–718. MR 96e:44004

[37] D. C. Solmon, The x-ray transform, J. Math. Anal. Appl. 56 (1976), 61–83.

[38] , Asymptotic formulas for the dual Radon transform and applications,
Math. Z. 195 (1987), 321–343.

[39] , The identification problem for the exponential Radon transform, Math.
Meth. Appl. Sci. 18 (1995), 687–695.

[40] A. Tamasan, In inverse boundary value problem in two-dimensional transport,
Inverse Problems 18 (2002), 209–219.

[41] , A two dimensional inverse boundary value problem in radiation transport,
Ph.D. thesis, U. Washington, 2002.

[42] O. J. Tretiak and C. Metz, The exponential Radon transform, SIAM J. Appl.
Math. 39 (1980), 341–354.

David V. Finch

Department of Mathematics

Oregon State University

Corvallis, OR 97331, USA

finch@math.orst.edu


