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Inverse Acoustic and Electromagnetic

Scattering Theory

DAVID COLTON

Abstract. This paper is a survey of the inverse scattering problem for

time-harmonic acoustic and electromagnetic waves at fixed frequency. We

begin by a discussion of “weak scattering” and Newton-type methods for

solving the inverse scattering problem for acoustic waves, including a brief

discussion of Tikhonov’s method for the numerical solution of ill-posed

problems. We then proceed to prove a uniqueness theorem for the inverse

obstacle problems for acoustic waves and the linear sampling method for

reconstructing the shape of a scattering obstacle from far field data. In-

cluded in our discussion is a description of Kirsch’s factorization method

for solving this problem. We then turn our attention to uniqueness and re-

construction algorithms for determining the support of an inhomogeneous,

anisotropic media from acoustic far field data. Our survey is concluded

by a brief discussion of the inverse scattering problem for time-harmonic

electromagnetic waves.

1. Introduction

The field of inverse scattering, at least for acoustic and electromagnetic waves,

can be viewed as originating with the invention of radar and sonar during the

Second World War. Indeed, as every viewer of World War II movies knows, the

ability to use acoustic and electromagnetic waves to determine the location of

hostile objects through sea water and clouds played a decisive role in the outcome

of that war. Inspired by the success of radar and sonar, the prospect was raised

of the possibility of not only determining the range of an object from the trans-

mitter, but to also image the object and thereby identify it, i.e. to distinguish

between a whale and a submarine or a goose and an airplane. However, it was

soon realized that the problem of identification was considerably more difficult

than that of simply determining the location of a target. In particular, not only

was the identification problem computationally extremely expensive, and indeed

beyond the capabilities of post-war computing facilities, but the problem was

also ill-posed in the sense that the solution did not depend continuously on the
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measured data. It was not until the 1970’s with the development of the math-

ematical theory of ill-posed problems by Tikhonov and his school in the Soviet

Union and Keith Miller and others in the United States, together with the rise of

high speed computing facilities, that the possibility of imaging began to appear

as a realistic possibility. Since that time, the mathematical basis of the acoustic

and electromagnetic inverse scattering problem has reached a level of maturity

that the imaging hopes expressed in the early post-war years have to a certain

extent been realized, at least in the case of electromagnetic waves with the in-

vention of synthetic aperature radar [3], [8]. However, as the imaging demands

have increased so have the mathematical and computational expectations and

hence at this time it seems appropriate to make an attempt at describing the

state of the art in the mathematical foundations of acoustic and electromagnetic

inverse scattering theory. This article is directed towards that goal.

Before proceeding, a few caveats are perhaps in order. The first one is obvious:

we are not proposing to survey the entire field of inverse scattering theory in a

few pages. In particular, we will restrict our attention to a specific area, that

is inverse scattering in the frequency domain and deterministic models. This

means such important topics as time-reversal and scattering by random media

are ignored. Even within this restrictive framework we will be selective and hence

opinionated. In particular, our view is that the mathematical field of inverse

scattering theory should remain close to the applications and in particular should

have the numerical solution of practical imaging problems in “real time” as a high

priority. Uniqueness theorems are important since they indicate what is possible

to image in an ideal noise-free world but not all reconstruction algorithms are

equally valuable from this point of view. Proceeding with such judgments, since

the inverse scattering problem is ill-posed, restoring stability is clearly of central

importance, but again not all stability results are of equal value. In particular,

in order to restore stability some type of a priori information is needed and an

estimate on the noise level is in general more realistic than the knowledge of, for

example, an a priori bound on the curvature of the scattering object. It is freely

acknowledged that points of view other than our own are both reasonable and

legitimate and we are only emphasizing our own view here in order to warn the

reader of what to expect in the pages that follow.

Before proceeding to a discussion of the inverse scattering problem and meth-

ods for its numerical solution we need to be clear on what inverse scattering

problem we are talking about since depending on what a priori information is

available there are many inverse scattering problems! For example, in using ul-

trasound to image the human body it is not unreasonable to assume that the

density is known and equal to the density of water. In this case incident waves at

a single fixed frequency are sufficient for imaging purposes whereas this is not the

case if the density is not known a priori. On the other hand in imaging a target

that has been (partially) coated by an unknown material, it is not reasonable

to assume that the boundary condition on the surface of the scatterer is known.
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Indeed, in my opinion, this last example is more typical in the sense that one

usually knows neither the shape nor the material properties of a scattering ob-

ject and hence neither the shape nor boundary conditions are known. Of course

if a priori information on the material properties of the scatterer are known (as,

for example, in the case of ultrasound imaging of the human body) it is usually

beneficial to use an algorithm which makes use of this information.

The plan of this paper is as follows. Except for the final section, we shall con-

centrate on the scattering of time-harmonic acoustic waves at a fixed frequency.

Hence in Section 2 we shall formulate the acoustic scattering problem and discuss

various inverse scattering problems and their solution by either “weak-scattering”

or Newton-type methods. These two methods are the work horses of inverse scat-

tering and typically lead to the problem of solving linear integral equations of the

first kind arising in either the weak-scattering approximation or in the computa-

tion of the Fréchet derivative of a nonlinear operator. With this as motivation we

shall give a brief introduction to Tikhonov’s method for the numerical solution

of ill-posed problems.

The methods presented in Section 2 for solving acoustic inverse scattering

problems rely on rather strong a priori information on the scattering object. In

Section 3 we shall turn to more recent methods which avoid such strong assump-

tions but at the expense of needing more data. In particular, we shall concentrate

on the case of obstacle scattering and prove the Kirsch–Kress uniqueness theo-

rem [46] which in turn serves as motivation for the linear sampling method for

determining the shape of the scatterer [12],[42]. We shall in addition present a

recent optimization scheme of Kirsch which has certain attractive characteristics

and is closely related to the linear sampling method [44].

In Section 4 we will first consider acoustic inverse scattering problems asso-

ciated with an isotropic inhomogeneous medium and begin with the uniqueness

theorems of Nachman [53], Novikov [57] and Ramm [66]. In this case special

problems occur in the case of scattering in R2. We will again discuss the linear

sampling method for determining the support of the inhomogeneous scatter-

ing object, leading to an investigation of the existence, uniqueness and spectral

properties of the interior transmission problem [13], [14], [19], [67]. We will then

proceed to an extension of these results to the case of anisotropic media. In

contrast to the case of isotropic media, variational methods rather than integral

equation techniques are a more convenient tool in this case [6], [7], [31].

Finally, in Section 5, we consider the inverse scattering problem for Max-

well’s equations and extend some of the results in the previous sections to this

situation. However, much of what is known for the scalar case of acoustic waves

remains unknown in the vector case and hence is a rich area for future study.

To this end, we conclude our survey with a list of open problems for the electro-

magnetic inverse scattering problem.



70 DAVID COLTON

2. The Inverse Scattering Problem for Acoustic Waves

We now consider the scattering of a time harmonic acoustic wave of frequency

ω by an inhomogeneous medium of compact support D having density ρD(x) and

sound speed cD(x), x ∈ D ⊂ R3. We assume that the boundary ∂D is of class

C2 having unit outward normal ν (although much of the analysis which follows

is also valid for Lipschitz domains-see [4],[6]) and that ρD, cD ∈ C2(D̄). Then

if the host medium is homogeneous with density ρ and sound speed c, the wave

number k is defined by k = ω/c,

n(x) = c/c(x), x ∈ D

and the pressure p(x, t) is given by

p(x, t) =

{

Re(u(x)e−iωt) if x ∈ R3 \D,

Re(v(x)e−iωt) if x ∈ D,

then u ∈ C2(R3 \ D̄)
⋂

C1(R3 \D) and v ∈ C2(D)
⋂

C1(D̄) satisfy the acoustic

transmission problem

∆u+ k2u = 0 in R3 \ D̄, (2–1a)

ρD(x)∇
(

1

ρD(x)
∇v

)

+ k2n(x)v = 0 in D, (2–1b)

u = ui + us, (2–1c)

lim
r→∞

r
(

∂us

∂r
− ikus

)

= 0, (2–1d)

u = v

1

ρ

∂u

∂ν
=

1

ρD

∂v

∂ν

on ∂D,

on ∂D,
(2–1e)

where ui is the incident field, which we assume is given by

ui(x) = eikx·d, |d| = 1,

and the Sommerfeld radiation condition (2–1d) holds uniformly in x̂ = x/|x|,
r = |x|.

To allow the possibility of absorption in D we allow n to possibly have a

positive imaginary part; that is, in addition to Ren(x) > 0 for x ∈ D we require

that

Imn(x) ≥ 0

for x ∈ D. The existence of a unique solution to (2–1) has been established by

Werner [73].

For the sake of simplicity, we shall be concerned in this and the next two

sections with certain special cases of the above transmission problem. In par-

ticular, if ρD → ∞ we are led to the exterior Neumann problem for u ∈
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C2(R3 \ D̄) ∩ C1(R3 \D),

∆u+ k2u = 0 in R3 \ D̄, (2–2a)

u = ui + us, (2–2b)

lim
r→∞

r
(

∂us

∂r
− ikus

)

= 0, (2–2c)

∂u

∂ν
= 0 on ∂D; (2–2d)

if ρD → 0 we are led to the exterior Dirichlet problem for u ∈ C2(R3 \ D̄) ∩
C(R3 \D),

∆u+ k2u = 0 in R3 \ D̄, (2–3a)

u = ui + us, (2–3b)

lim
r→∞

r
(

∂us

∂r
− ikus

)

= 0, (2–3c)

u = 0 on ∂D; (2–3d)

and if ρ = ρD we are led to the inhomogeneous medium problem for u ∈
C1(R3)

⋂

C2(R3 \ ∂D),

∆u+ k2n(x)u = 0 in R3, (2–4a)

u = ui + us, (2–4b)

lim
r→∞

r
(

∂us

∂r
− ikus

)

= 0, (2–4c)

where n(x) = 1 in R3 \ D̄.

For the purpose of exposition, in the sequel we shall restrict our attention to

the exterior Dirichlet problem and inhomogeneous medium problem (the exterior

Neumann problem can be treated in essentially the same way as the exterior

Dirichlet problem).

We can now be more explicit about what we mean by the acoustic inverse scat-

tering problem. In particular, using Green’s theorem and the radiation condition

it is easy to show that the scattered field us has the representation

us(x) =

∫

∂D

(

us(y)
∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)

)

ds(y) (2–5)

for x ∈ R3 \ D̄ where Φ is the radiating fundamental solution to the Helmholtz

equation (2–1a) defined by

Φ(x, y) :=
eik|x−y|

4π|x− y| , x 6= y. (2–6)

From (2–5) and (2–6) we see that us has the asymptotic behavior

us(x) =
eikr

r
u∞(x̂, d) +O

(

1

r2

)

(2–7)
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as r → ∞ where u∞ is the far field pattern of the scattered field us. In the

case of the exterior Dirichlet problem, the inverse scattering problem we will be

concerned with is to determine D from a knowledge of u∞(x̂, d) for x̂ and d on the

unit sphere Ω := {x : |x| = 1} and fixed wave number k. For the inhomogeneous

medium problem we will consider two inverse scattering problems, that of either

determining D from u∞(x̂, d) or n(x) from u∞(x̂, d), again assuming that k is

fixed. In all cases, we will always assume (except in discussing uniqueness) that

u∞ is not known exactly but is determined by measurements that by definition

are inexact.

The inverse scattering problems defined above are particularly difficult to solve

for two reasons: they are 1) nonlinear and 2) ill-posed. Of these two reasons,

it is the latter that creates the most difficulty. In particular, it is easily verified

that u∞ is an analytic function of both x̂ and d on the unit sphere and hence,

for a given measured far field pattern (i.e. “noisy data”), in general no solution

exists to the inverse scattering problem under consideration. On the other hand,

if a solution does exist it does not depend continuously on the measured data

in any reasonable norm. Hence, before we can begin to construct a solution

to an inverse scattering problem we must explain what we mean by a solution.

In order to do this it is necessary to introduce “nonstandard” information that

reflects the physical situation we are trying to model. Various ideas for doing

this have been introduced, ranging from a priori bounds on the curvature of ∂D

or the derivatives of n(x) to having an a priori estimate of the noise level. The

latter approach leads to what is called the Morozov discrepancy principle and

will be discussed at the end of this section.

The two most popular methods for solving inverse scattering problems such

as those described above are based on either what is called the “weak-scattering”

approximation or on nonlinear optimization techniques. For a comprehensive dis-

cussion of such methods we refer the reader to Langenberg [51] and Biegler, et.al.

[2] respectively. Here we shall content ourselves with only a brief description of

these two approaches. We begin with the weak-scattering approximation, in par-

ticular the physical optics approximation for the case of the exterior Dirichlet

problem.

The physical optics approximation is valid for a convex obstacle and large

values of the wave number k. In particular, it is assumed that in a first approx-

imation a convex object D may locally be considered at each point x of ∂D as a

plane with normal ν(x). For the exterior Dirichlet problem, this means that not

only does the total field u satisfy u = 0 on ∂D but also

∂u

∂ν
= 2

∂ui

∂ν
(2–8)

in the illuminated region ∂D− := {x ∈ ∂D : ν(x) · d < 0} and

∂u

∂ν
= 0 (2–9)
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in the shadow region ∂D+ := {x ∈ ∂D : ν(x) · d > 0}. Hence, using the identity

0 =

∫

∂D

(

ui(y)
∂Φ(x, y)

∂ν(y)
− ∂ui

∂ν
(y)Φ(x, y)

)

ds(y)

for x ∈ R3 \ D̄ we see from (2–5) that under the physical optics approximation

(2–8), (2–9)

u∞(x̂, d) = − 1

2π

∫

∂D−

∂

∂ν
eiky·de−ikx̂·y ds(y) =

−ik
4π

∫

∂D1

ν(y) · deik(d−x̂)·y ds(y).

Hence, setting x̂ = −d, replacing d by −d and adding yields the Bojarski identity

u∞(−d, d) + u∞(d,−d) = − 1

4π

∫

∂D

∂

∂ν(y)
e2ikd·y ds(y)

=
k2

4π

∫

R3

χ(y)e2ikd·y dy, (2–10)

where χ is the characteristic function of D. Hence, under the assumption that

k is large, D is convex and u = 0 on ∂D, (2–10) is a linear integral equation

which in principle yields D from a knowledge of u∞. However, the kernel of

this integral equation is analytic and hence solving (2–10) is a severely ill-posed

problem! We shall indicate possible methods for solving such problems at the

end of this section. Note that in order to ensure injectivity we must assume that

(2–10) holds for an interval of k values.

An analogous procedure to the above method for attempting to solve the

inverse obstacle problem can also be carried out for the inverse inhomogeneous

medium problem, this time under the assumption that the wave number k is

small. To derive the desired integral equation we reformulate the inhomogeneous

medium problem (2–4) as the Lippmann–Schwinger integral equation

u(x) = ui(x) − k2

∫

R3

Φ(x, y)m(y)u(y) dy, x ∈ R3, (2–11)

where m := 1−n. If k is small, we can solve (2–11) by successive approximations

and, if we replace u by the first term in this iterative process and let r = |x| → ∞,

we obtain the Born approximation

u∞(x̂, d) = − k2

4π

∫

R3

e−ikx̂·ym(y)ui(y) dy. (2–12)

(2–12) is again a linear integral equation of the first kind for the determination

of m from u∞ under the assumption that k is sufficiently small and ρ = ρD in

(2–1). In order to ensure injectivity we must again assume that (2–12) is valid

for an interval of k values. For further developments in this direction see [22].
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Although the weak scattering models discussed above have had considerable

success, particularly in their extensions to the electromagnetic case and use in

the development of synthetic aperature radar, they suffer in more complicated

imaging problems where multiple scattering effects can no longer be ignored.

In order to treat such problems, a considerable effort has been put into the

derivation of robust nonlinear optimization schemes. The advantage of such

an approach is that u∞ need only be known for a single fixed value of k and

multiple scattering effects are no longer ignored, although it is still necessary to

have some a priori knowledge of the physical properties of the scattering object

(e.g. u = 0 on ∂D or ρ = ρD as in the above examples). A difficulty with

nonlinear optimization techniques is that they are often computationally very

expensive.

We begin our discussion of nonlinear optimization methods for solving the

inverse scattering problem by considering the exterior Dirichlet problem (2–3).

To this end we note the solution to the direct scattering problem with a fixed

incident plane wave ui defines an operator F : ∂D → U∞ which maps the

boundary ∂D onto the far field pattern u∞ of the scattered field. In terms

of this operator, the inverse problem consists in solving the nonlinear equation

F(∂D) = u∞. Having in mind that for ill-posed problems the norm in the

data space has to be suitable for describing the measurement error, we make

the assumption that u∞ is in the Hilbert space L2(Ω). For ∂D we need to

choose a class of admissible surfaces described by some suitable parameterization

and equipped with an appropriate norm. For the sake of simplicity, we restrict

ourselves to the class of domains D that are star-like with respect to the origin

with C2 boundary ∂D, i.e. we assume that ∂D is represented in its parametric

form

x = r(x̂)x̂, x̂ ∈ Ω,

for a positive function r ∈ C2(Ω). We now view the operator F as a mapping

from C2(Ω) into L2(Ω) and write F(∂D) = u∞ as

F(r) = u∞. (2–13)

The following basic theorem was first proved by Kirsch [41] using variational

methods and subsequently by Potthast [63] using a boundary integral equation

approach (see also [34] and [48]). We note that the validity of the following theo-

rem for the case of the exterior Neumann problem remains an open question [50].

Theorem 2.1. The boundary to far field map F : C2(Ω) → L2(Ω) has a Fréchet

derivative F ′. The linear operator F ′ is compact and injective with dense range.

Theorem 2.1 now allows us to apply Newton’s method to solve (2–13). In partic-

ular, given a far field pattern u∞ and initial guess r0 to r, the nonlinear equation

(2–13) is replaced by the linearized equation

F(r0) + F ′q = u∞,
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which is then solved for q to yield the new approximation r, given by r1 = r0 +q.

Newton’s method than consists in iterating this procedure. Note that since F ′

is compact each step of the iteration procedure is ill-posed. Alternate optimiza-

tion strategies for determining D have been proposed by numerous people in

particular Kirsch and Kress [45], Angell, Kleinman and Roach [1] and Maponi

et al. [52].

Newton’s method can also be used to determine the coefficient n(x) in the

inverse inhomogeneous medium problem [32] In this case the nonlinear operator

F is defined by means of the Lippmann–Schwinger integral equation (2–11).

Other methods for determining n(x) have been proposed by Colton and Monk

(see Chapter 10 of [14])who use an averaging procedure to reduce the number of

unknowns, Gutman and Klibanov [26], who confine themselves to reconstructing

a fixed number of Fourier coefficients of n where the number depends on the

wave number k, Kleinman and Van den Berg [72], who use a modified gradient

method for an output least squares formulation of the problem, and Natterer and

Wübbeling [54], [55] who employ an algebraic reconstruction technique (ART) to

determine n(x). We shall conclude our brief discussion of nonlinear optimization

schemes to solve inverse scattering problems by describing the method of Natterer

and Wübbeling.

Our aim is to reconstruct the coefficient n(x) from a knowledge of the far field

pattern corresponding to the inhomogeneous medium scattering problem (2–4).

We assume that D ⊂ {x : |x| < ρ} and that our data is p far field patterns

u∞(x̂, dj), j = 1, . . . , p, corresponding to p distinct incident plane waves. From

each u∞(x̂, dj) we can determine the Cauchy data on the planes Γ±
j perpendicular

to dj for the solution uj of (2–4) corresponding to ui(x) = exp(ikx · dj) (see

figure). Assuming to begin with that n(x) is known, we want to determine uj

ρΓ

d

−
j

j

Γ
+
j
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on Γ+
j from the ill-posed Cauchy problem

∆uj + k2n(x)uj = 0 in R3, (2–14a)

u = f

∇u · dj = g

on Γ−
j ,

on Γ−
j

(2–14b)

This can be done in a stable fashion by finite difference methods if we first

filter out frequencies greater than κ where κ < k. We now define the nonlinear

operator Rj : L2(|x| < ρ) → L2(Γ+
j ) by

Rj(n) = uj
κ

∣

∣

Γ+

J

, (2–15)

where uj
κ is the filtered solution of (2–14). Our aim is to now solve the inverse

scattering problem by using an ART-type procedure to solve (2–15) for j =

1, . . . , p.

To solve (2–15) for n we set gj = uj
κ

∣

∣

Γ+

j

and solve this equation iteratively by

first determining np from

n0 = n0,

nj = nj−1 + ωR′
j(nj−1)

∗C−1
j (gj −Rj(nj−1)),

where n0 is an initial guess, ω is a relaxation parameter, R′
j is the Frechet

derivative of Rj , Cj = R′
j(0)(R′

j(0))∗ where ∗ denotes the adjoint operator and

the operator C−1
j can be applied through the use of Fourier transforms (see [54]).

The first approximation is now defined to be np and the procedure is repeated.

For details we refer the reader to Natterer and Wübbeling [54] [55] where the

computational advantages of using such an approach are discussed. An extension

of this method (which is sometimes called the “adjoint field method”) to the case

of time-harmonic electromagnetic waves has been done by Dorn, et.al.[23].

In both the weak scattering and Newton-type methods for solving the inverse

scattering problem we are faced with the problem of solving a linear operator

equation of the form

Aϕ = f

where A : X → Y is compact and X and Y are infinite dimensional normed

spaces. We shall also encounter such equations in the sequel when we consider

linear sampling methods for solving the inverse scattering problem. Hence it is

appropriate to conclude this section of our paper by giving some idea of how

such equations can be solved numerically. The problem in doing this is that

since A is compact solving Aϕ = f is an ill-posed problem in the sense that A−1,

if it exists, is unbounded. This follows immediately from the fact that if A−1

were bounded then I = A−1A is compact, a contradiction since X is infinite

dimensional. Our discussion will purposefully be brief and for more information

on the solution of ill-posed problems we refer the reader to Engl, Hanke and

Neubauer [24], Kirsch [40] and Kress[47].
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We restrict our attention to the case when X and Y are infinite dimensional

Hilbert spaces. We denote by (σn, ϕn, gn) a singular system for the compact

operator A : X → Y , so that

Aϕn = σngn, A∗gn = σnϕn,

and we denote the null space of A by N(A).

Picard’s Theorem. Aϕ = f is solvable if and only if f ∈ N(A∗)⊥ and

∞
∑

n=1

1

σ2
n

∣

∣(f, gn)
∣

∣

2
<∞.

In this case a solution is given by

ϕ =
∞
∑

n=1

1

σn
(f, gn)ϕn.

Definition 2.2. The equation Aϕ = f is mildly ill-posed if σn = O(n−β), for

β ∈ R+, and severely ill-posed if the σn decay faster than this.

We note that the equations appearing in inverse scattering theory are typically

severely ill-posed.

For severely ill-posed problems we must use regularization methods to arrive

at a solution.

Definition 2.3. Let A : X → Y be an injective compact linear operator. Then

a family of bounded linear operators Rα : Y → X,α > 0, such that

lim
α→0

RαAϕ = ϕ

for all ϕ ∈ X is called a regularization scheme for A with regularization parameter

α.

Suppose the solution ϕ of Aϕ = f is approximated by

ϕδ
α := Rαf

δ

where ‖f − f δ‖ ≤ δ. Then

ϕδ
α − ϕ = Rαf

δ −Rαf +RαAϕ− ϕ

and hence

‖ϕδ
α − ϕ‖ ≤ δ‖Rα‖ + ‖RαAϕ− ϕ‖.

The first term in the above equation increases as α tends to zero (since A−1 is

not bounded) whereas the second term is only small when α tends to zero. How

should α = α(δ) be chosen?
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Definition 2.4. The choice of α = α(δ) is called regular if for all f ∈ A(X)

and all f δ ∈ Y with ‖f − f δ‖ ≤ δ we have

Rα(δ)f
δ → A−1f

as δ tends to zero.

We shall now describe a regular regularization scheme due to Tikhonov and

Morozov for solving the ill-posed equation Aϕ = f .

Assume once again that A : X → Y is compact. Then, since A∗A ≥ 0, for

every α > 0 the operator αI + A∗A : X → X is bijective with bounded inverse.

The Tikhonov regularization method for solving Aϕ = f is to set

Rα := (αI +A∗A)−1A∗.

Then the regularized solution ϕα of Aϕ = f is the unique solution of

αϕα +A∗Aϕα = A∗f.

In particular, if A is injective, then

ϕα =

∞
∑

n=l

σn

α+ σ2
n

(f, gn)ϕn = Rαf

and hence as α tends to zero we have RαAϕ → ϕ for all ϕ ∈ X. The function

ϕα can also be obtained by minimizing the Tikhonov functional

‖Aϕ− f‖2 + α‖ϕ‖2.

Note that if A is injective with dense range then ‖ϕα‖ → ∞ as α tends to zero

if and only if f 6∈ A(X).

We now turn to the choice of the regularization parameter α. If A is injective

with dense range then a regular method for choosing α is the Morozov discrepancy

principle. In particular, assume that we want to solve

Aδϕ = fε

where ‖A − Aδ‖ ≤ δ and ‖f − fε‖ ≤ ε with known δ and ε, i.e. an estimate of

the noise level is known a priori. We require that the residual be commensurate

with the accuracy of the measurements of A and f , i.e.

‖Aδϕα − fε‖ ≈ ε+ δ‖ϕα‖.

In applications to the linear sampling method described in the sequel we have

ε � δ. Hence, in this case, the Morozov discrepancy principle is to choose

α = α(δ) such that µ(α) = 0, where

µ(α) := ‖Aδϕα − fε‖2 − δ2‖αα‖2 =

∞
∑

n=1

α2 − δ2σ2
n

(σ2
n + α)2

∣

∣(fε, gn)
∣

∣

2
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and (σn, ϕn, gn) is now a singular system for the operator Aδ. We note that µ(α)

is monotonously increasing and in practice only a rough approximation to the

root of µ(α) = 0 is necessary.

In closing this section, we make a few comments on the use of Tikhonov reg-

ularization and the Morozov discrepancy principle in solving ill-posed problems

arising in inverse scattering theory. In particular, we note that in general one

has no idea if the noise level is small enough so that the regularized solution of

the equation with noisy data is in fact a good approximation to the solution of

the noise free equation. Without further a priori information the only statement

that can be made is what happens if the noise tends to zero. However, since

the noise is fixed and nonzero, in general all that can be said is that there is a

“nearby” equation (i.e. noisy A and f) whose solution can be obtained and if

this nearby equation is “close enough” to the noise free equation then one expects

the regularized solution to behave like the true solution, assuming it exists. In

particular, since without severe a priori assumptions, which are in general not

available, error estimates are not known for the dependency of the regularized

solution on the noise level, and the remark of Lanczos is valid: “A lack of in-

formation cannot be remedied by any mathematical trickery.” Nevertheless, a

regularized solution based on Tikhonov regularization and the Morozov discrep-

ancy principle provides a rational approach for arriving at a candidate for a

solution to an ill-posed problem when an a priori estimate of the noise level is

available.

3. The Inverse Dirichlet Problem for Acoustic Waves

In the previous section we discussed two of the most popular methods for

solving the inverse scattering problem, i.e. the weak scattering approximation

and nonlinear optimization techniques, as well as regularization methods that

can be used for their numerical solution. However, as previously mentioned,

both of these methods rely on some a priori knowledge of the physical properties

of the scattering object D in order to know the boundary conditions on ∂D.

Furthermore, uniqueness theorems were not discussed, in particular how much

information is needed in principle to determine D or, more importantly, can

D be determined from the far field data if the boundary conditions are not

known? We view these issues as particularly important since in many practical

inverse scattering problems both the material properties of the scatterer as well

as its shape are unknown. In this and the sections that follow we will be paying

particular attention to inverse scattering problems such as these.

In this section we will consider the inverse scattering problem associated with

the exterior Dirichlet problem (2–3) and, when relevant, point out what results

are in fact independent of the boundary condition on ∂D. We will always assume

the existence of a solution u ∈ C2(R3 \ D̄) ∩ C(R3 \D) to (2–3) as well as the

fact that since ∂D is in class C2 we have u ∈ C1(R3 \D) [14]. We begin with
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Rellich’s lemma which forms the basis of the entire field of acoustic scattering

theory.

Theorem 3.1 (Rellich’s lemma). Let us be a solution of the Helmholtz

equation in the exterior of D satisfying the Sommerfeld radiation condition such

that the far field pattern u∞ of us vanishes. Then us = 0 in R3 \ D̄.

Proof. For sufficiently large |x| we have a Fourier expansion

us(x) =
∞
∑

n=0

n
∑

m=−n

am
n (r)Y m

n (x̂)

with respect to the spherical harmonics Y m
n where the coefficients are given by

am
n (r) =

∫

Ω

us(rx̂)Y m
n (x̂) ds(x̂).

Since us ∈ C2(R3 \ D̄) and the radiation condition holds uniformly in x̂, we can

differentiate under the integral sign and integrate by parts to conclude that am
n

is a solution of the spherical Bessel equation

d2am
n

dr2
+

2

r

dam
n

dr
+ (k2 − n(n+ 1)

r2
)am

n = 0

satisfying the radiation condition, i.e.

am
n (r) = αm

n h
(1)
n (kr)

where h
(1)
n is a spherical Hankel function of the first kind of order n and the

αm
n are constants depending only on n and m. From (2–7) we have that, since

u∞ = 0,

lim
r→∞

∫

|x|=r

∣

∣us(x)
∣

∣

2
ds =

∫

Ω

∣

∣u∞(x̂)
∣

∣

2
ds = 0.

But by Parseval’s equality
∫

|x|=r

∣

∣us(x)
∣

∣

2
ds = r2

∞
∑

n=0

n
∑

m=−n

∣

∣am
n (r)

∣

∣

2
.

Substituting the above expression for am
n into this identity, letting r tend to

infinity, and using the asymptotic behavior of the spherical Hankel functions

now yields αm
n = 0 for all n and m. Hence us = 0 outside a sufficiently large

sphere. By the representation formula (2–5) we see that us is an analytic function

of x, and hence we can now conclude that us = 0 in R3 \ D̄ by analyticity. ˜

In the sequel we will need two reciprocity relations which can be proved by a

straightforward application of Green’s theorem. The first of these is for scattering

by a plane wave, i.e. ui(x) = eikx̂·d in (2–3), and is given by [14]

u∞(x̂, d) = u∞(−d,−x̂) (3–1)
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and the second of these is for scattering due to the point source ui(x) = Φ(x, z)

having far field pattern u∞(x̂, z) and is given by [62]

4πu∞(−d, z) = us(z, d) (3–2)

for z ∈ R3 \ D̄, d ∈ Ω, where us is the scattered field in (2–3) corresponding to

ui(x) = eikx·d.

We now consider the scattering problem (2–3) and let u∞ be the far field

pattern of the scattered field. The far field operator F : L2(Ω) → L2(Ω) for this

problem is defined by

(Fg)(x̂) :=

∫

Ω

u∞(x̂, d)g(d) ds(d) (3–3)

and is easily seen to be the scattered field vs
g corresponding to the Herglotz wave

function

vi
g(x) :=

∫

Ω

eikx·dg(d) ds(d), x ∈ R3

as incident field. The function g ∈ L2(Ω) is known as the kernel of the Herglotz

wave function. Of basic importance to us is the following theorem [14].

Theorem 3.2. The far field operator F is injective with dense range if and only

if there does not exist a Dirichlet eigenfunction for D which is a Herglotz wave

function.

Proof. For the L2 adjoint F ∗ : L2(Ω) → L2(Ω) the reciprocity relation (3–1)

implies that

F ∗g = RFRḡ (3–4)

where R : L2(Ω) → L2(Ω) is defined by

(Rg)(d) := g(−d).

Hence, the operator F is injective if and only if its adjoint F ∗ is injective. Re-

calling that the denseness of the range of F is equivalent to the injectivity of

F ∗ we therefore must only show the injectivity of F . To this end, we note that

Fg = 0 with g 6= 0 is equivalent to the existence of a nontrivial Herglotz wave

function vi
g with kernel g for which the far field pattern of the corresponding

scattered field vs is v∞ = 0. By Rellich’s lemma this implies vs = 0 in R3 \D
and the boundary condition vi

g + vs = 0 on ∂D now shows that vi
g = 0 on ∂D.

The proof is finished. ˜

We now want to show that the far field F is normal. To this end, we need the

following lemma [15].

Lemma 3.3. The far field operator F satisfies

2π
(

(Fg, h) − (g, Fh)
)

= ik(Fg, Fh).
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Proof. If vs and ws are radiating solutions to the Helmholtz equation with

far field patterns v∞ and w∞ then from the radiation condition and Green’s

theorem we obtain
∫

∂D

(

vs ∂w
s

∂ν
− ws

∂vs

∂ν

)

ds = −2ik

∫

Ω

v∞w∞ ds.

From the representation formula (2–5) and letting x → ∞ we see that, if wi
h is

a Herglotz wave function with kernel h, then

∫

∂D

(

vs(x)
∂wi

h

∂ν
(x) − wi

h(x)
∂vs

∂ν
(x)

)

ds(x)

=

∫

Ω

h(d)

∫

∂D

(vs(x)
∂e−ikx·d

∂ν
− e−ikx·d ∂v

s

∂ν
(x)) ds(x) ds(d)

= 4π

∫

Ω

h(d)v∞(d) ds(d).

Now let vi
g and vi

h be Herglotz wave functions with kernels g, h ∈ L2(Ω),

respectively, and let vg, vh be the solutions of (2–3) with ui replaced by vi
g and

vi
h, respectively. Let vg,∞ and vh,∞ be the corresponding far field patterns. Then

we can combine the two previous equations to obtain

−2ik(Fg, Fh) + 4π(Fg, h) − 4π(g, Fh)

= −2ik

∫

Ω

vg,∞vh,∞ ds+ 4π

∫

Ω

vg,∞h̄ ds− 4π

∫

Ω

gvh,∞ ds

=

∫

∂D

(

vg
∂vh

∂ν
− vh

∂vg

∂ν

)

ds

and the lemma follows from the Dirichlet boundary condition satisfied by vg

and vh. ˜

Theorem 3.4. The far field operator F is compact and normal .

Proof. Since F is an integral operator on Ω with a continuous kernel, it is

compact. From Lemma 3.3 we have

(g, ikF ∗Fh) = 2π
(

(g, Fh) − (g, F ∗h)
)

for all g, h ∈ L2(Ω) and hence

ikF ∗F = 2π(F − F ∗). (3–5)

Using (3–4) we can deduce that

(F ∗g, F ∗h) = (FRh̄, FRḡ)
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and hence from Lemma 3.3 again it follows that

ik(F ∗g, F ∗h) = 2π
(

(g, F ∗h) − (F ∗g, h)
)

for all g, h ∈ L2(Ω). If we now proceed as in the derivation of (3–6) we find that

ikFF ∗ = 2π(F − F ∗) (3–6)

and the proof is finished. ˜

The proof of Theorem 3.4 carries over to the case of Neumann boundary data.

However for the impedance boundary condition

∂u

∂ν
+ ikλu = 0

where λ > 0 the operator F is no longer normal since Lemma 3.3 is not valid,

i.e. absorption destroys normality. Finally, returning to the case of Dirichlet

boundary data, if we define the scattering operator S : L2(Ω) → L2(Ω) by

S = I +
ik

2π
F

then from (3–5) and (3–6) we see that SS∗ = S∗S = I, i.e., S is unitary.

Having established the basic properties of the far field pattern and far field

operator, we now turn our attention to the uniqueness of a solution to the inverse

scattering problem, basing our analysis on the approach of Kirsch and Kress [46]

with a subsequent simplification of the proof by Potthast [62].

Theorem 3.5. Assume that D1 and D2 are two obstacles such that the far field

patterns corresponding to the exterior Dirichlet problem (2–3) for D1 and D2

coincide for all incident directions d. Then D1 = D2.

Proof. By analyticity and Rellich’s lemma the scattered fields us
1( · , d) =

us
2( · , d) for the incident fields ui(x, d) = eikx·d coincide in the unbounded com-

ponent G of the complement of D̄1 ∪ D̄2 for all d ∈ Ω. Then from the reciprocity

relation (3–2) we can conclude that the far field patterns u1,∞( · , z) = u2,∞( · , z)
for the scattering of point sources Φ( · , z) coincide for all point sources located at

z ∈ G. Again by Rellich’s lemma, this implies that the corresponding scattered

fields satisfy us
1(x, z) = us

2(x, z) for all x, z ∈ G.

Now assume that D1 6= D2. Then, without loss of generality, there exists

x∗ ∈ ∂G such that x∗ ∈ ∂D1 and x∗ 6∈ D̄2. In particular, we have

zn := x∗ +
1

n
ν(x∗)

is in G for integers n sufficiently large. Then, on the one hand, we have

lim
n→∞

us
2(x

∗, zn) = us
2(x

∗, x∗)
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since us
2(x

∗, ·) is continuous in a neighborhood of x∗ 6∈ D̄2 due to the well-

posedness of the direct scattering problem. On the other hand, we have

lim
n→∞

us
1(x

∗, zn) = ∞

because of the boundary condition us
1(x

∗, zn) + Φ(x∗, zn) = 0. This contradicts

the fact that us
1(x

∗, zn) = us
2(x

∗, zn) for n sufficiently large and the proof in

complete. ˜

A closer examination of the proof of Theorem 3.5 shows that the boundary

condition u = 0 is not used explicitly but rather only the well-posedness of

the direct scattering problem. Hence it is not necessary to know the boundary

condition (2–3d) a priori in order to conclude that the far field pattern uniquely

determines the scatterer. In fact it is not even necessary to know if u∞ is the

far field pattern of (2–2), (2–3) or (2–4) in order to conclude that D is uniquely

determined [41], [42]. In a related direction, Potthast [62], [64] has considered

the important case of finite data. In particular, if Ωn ⊂ Ω is a set of n uniformly

distributed unit vectors such that if

d(x̂,Ωn) := inf
d∈Ωn

|x̂− d|

then (1) d(x̂,Ωn) → 0 as n → ∞; (2) d ∈ Ωn =⇒ −d ∈ Ωn if n is even; and (3)

Ωn′ ,⊂ Ωn for n > n′ then the following theorem is valid.

Theorem 3.6. Let u∞1 and u∞2 be the far field patterns corresponding to one of

(2–2), (2–3) or (2–4). Given ε > 0 there exists integers n0 and ni such that if

u∞1 (x̂, d) = u∞2 (x̂, d) for x̂ ∈ Ωn0
, d ∈ Ωni

then

d(D1,D2) ≤ ε,

where d(D1,D2) denotes the Hausdorff distance between D1 and D2.

An open problem is to determine if one incident plane wave at a fixed wave

number k is sufficient to uniquely determine the scatterer D. If it is known a

priori that the boundary condition (2–3d) is satisfied and that furthermore D is

contained in a ball of radius R such that kR < π then it was shown by Colton

and Sleeman ([20] and Corollary 5.3 of [14]) that D is uniquely determined by

its far field pattern for a single incident direction d and fixed wave number k.

We now turn our attention to a method for reconstructing D from an inexact

knowledge of the far field pattern u∞ of the scattering problem (2–3) that is

closely related to the ideas of the proof of the uniqueness Theorem 3.5. Indeed,

as with Theorem 3.5, this method can be implemented without knowing a priori

which of the scattering problems (2–2), (2–3) or (2–4) is associated with u∞ and

in this sense has a clear advantage over the reconstruction methods discussed in

the previous section. On the other hand, the implementation requires a knowl-

edge of u∞(x̂, d) for x̂, d on open subsets of Ω whereas for obstacle scattering

Newton’s method only requires a single incident direction d. Furthermore, for
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the case of the scattering problem (2–4), only the support D is obtained rather

than the coefficient n(x). The method we have on mind was first introduced

by Colton and Kirsch in [12], with a subsequent second version being given by

Kirsch in [42] and [43] and has become known as the linear sampling method

(related methods have been considered by Ikehata [35], Norris [56] and Potthast

[65]). Here, for the sake of simplicity, we will assume that u∞(x̂, d) is known for

all x̂, d ∈ Ω rather than only on a subset of Ω. For the case of the first version of

the linear sampling method, this latter case can be easily handled by appealing

to the result that a Herglotz wave function and its first derivatives can be ap-

proximated on compact subsets of a ball B by another Herglotz wave function

having a kernel that is compactly supported on Ω. (This can easily be shown by

assuming without loss of generality that k2 is not a Dirichlet eigenvalue for B

and then using the ideas of the proof of Theorem 5.5 of [14] to show that Herglotz

wave functions with compactly supported kernels are dense in L2(∂B)).

To describe the basic idea behind the linear sampling method, assume that

for every z ∈ D there exists a unique solution g = g( · , z) ∈ L2(Ω) to the far

field equation
∫

Ω

u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z), (3–7)

where

Φ∞(x̂, z) =
1

4π
e−ikx̂·z

and u∞ is the far field pattern corresponding to the scattering problem (2–3).

Then, since the right hand side of (3–7) is the far field pattern of the fundamental

solution Φ(x, z), it follows from Rellich’s lemma that
∫

Ω

us(x, d)g(d) ds(d) = Φ(x, z)

for x ∈ R3 \D. From the boundary condition u = 0 on ∂D it now follows that

vi
g(x) + Φ(x, z) = 0 for x ∈ ∂D, (3–8)

where vi
g is the Herglotz wave function with kernel g. We now see from (3–8)

that vi
g becomes unbounded as z → x ∈ ∂D and hence

lim
z→∂D
z∈D

∥

∥g( · , z)
∥

∥ = ∞,

that is, ∂D is characterized by points z where the solution of (3–7) becomes

unbounded.

Unfortunately, in general the far field equation

Fg = Φ∞( · , z)

does not have a unique solution, nor does the above analysis say anything about

what happens when z ∈ R3 \D. However, using on the one hand the fact that
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Herglotz wave functions are dense in the space of solutions to the Helmholtz

equation in D with respect to the norm in the Sobolev space H1(D) (see [16],

[21]) and on the other the factorization of the far field operator F as

(Fg) = − 1

4π
FS−1(Hg),

where S : H−1/2(∂D) → H1/2(∂D) is the single layer potential

(Sϕ)(x) :=

∫

∂D

ϕ(y)Φ(x, y) ds(y), (3–9)

Hg is the trace on ∂D of the Herglotz wave function, and F : H−1/2(∂D) →
L2(Ω) is defined by

(Fϕ)(x̂) :=

∫

∂D

ϕ(y)ϕ−ikx̂·y ds(y),

we can prove the following result [4].

Theorem 3.7. Assume that k2 is not a Dirichlet eigenvalue for D. Then

(1) if z ∈ D for every ε > 0 there exists a solution g( · , z) ∈ L2(Ω) of the

inequality
∥

∥Fg( · , z) − Φ∞( · , z)
∥

∥ < ε

such that

lim
z→∂D

∥

∥g( · , z)
∥

∥

L2(Ω)
= ∞, lim

z→∂D

∥

∥vi
g( · , z)

∥

∥

H1(D)
= ∞,

(2) if z ∈ R3\D̄ for every ε > 0 and γ > 0 there exists a solution g( · , z) ∈ L2(Ω)

of the inequality
∥

∥Fg( · , z) − Φ∞( · , z)
∥

∥ < ε+ γ

such that

lim
γ→0

‖g( · , z)‖L2(Ω) = ∞, lim
γ→0

∥

∥vi
g( · , z)

∥

∥

H1(D)
= ∞.

We note that the difference between cases (1) and (2) of this theorem is that,

for z ∈ D, Φ∞( · , z) is in the range of F whereas for z ∈ R3 \ D̄ this is no longer

true.

The above theorem now suggests a numerical procedure for determining ∂D

from noisy far field data. In particular, let uδ
∞ be the measured far field data,

i.e. ‖uδ
∞−u∞‖ < δ and assume g is such that

∥

∥Fg−Φ∞( · , z)
∥

∥ < ε. If Fδ is the

operator F with kernel u∞ replaced by uδ
∞, then we want to find an approxima-

tion to g by solving Fδϕ = Φ∞( · , z); that is, we view both the operator and the

right hand side as being inexact. This equation is now solved using Tikhonov

regularization and the Morozov discrepancy principle. The unknown boundary

∂D is now determined by looking for those points z where
∥

∥ϕ( · , z)
∥

∥ begins to
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sharply increase. Numerical examples using this procedure can be found in [9],

[10] and [74].

The analogue of Theorem 3.7 for the exterior Neumann problem is established

in exactly the same way as Theorem 3.7 where now it is assumed that k2 is

not a Neumann eigenvalue for D. It is also possible to treat mixed boundary

value problems [4], [6]. As will be seen in the next section, a similar result also

holds for the inhomogeneous medium problem (2–4) as well as the more general

problem (2–1) provided k2 is not a transmission eigenvalue (to be defined in the

following section of this paper). In particular, as with Theorems 3.5 and 3.6,

it is not necessary to know the material properties of the scatterer (e.g., the

boundary condition) in order to determine D from a knowledge of the regularized

solution of the far field equation. it is also possible to treat the case when the

background medium is piecewise homogeneous by appropriately modifying the

far field equation [9]. The possibility of doing this is particularly important in

numerous applications, e.g. the detection of buried objects or structures under

foliage.

Theorem 3.7 is complicated by the fact that in general Φ∞( · , z) is not in the

range of F for neither z ∈ D nor z ∈ R3 \ D̄. For the case when F is normal

(say nonabsorbing media and data on all of Ω rather than some subset of Ω),

this problem was resolved by Kirsch [42], who proposed replacing the equation

Fg = Φ∞( · , z) by (F ∗F )
1
4 g = Φ∞( · , z) where F ∗ is again the adjoint of F in

L2(Ω). He was then able to show that Φ( · , z) is in the range of (F ∗F )
1
4 if and

only if z ∈ D. We will now outline the main ideas of Kirsch’s proof of this result.

In what follows, S : L2(∂D) → L2(∂D) is the single layer potential defined by

(3–9) and G : L2(∂D) → L2(Ω) is defined by Gh = v∞ where v∞ is the far field

pattern of the solution to the radiating exterior Dirichlet problem with boundary

data h ∈ L2(∂D). The relation among the operators F,G and S is given by the

following lemma.

Lemma 3.8. The relation

F = −4πGS∗G∗

is valid where G∗ : L2(Ω) → L2(∂D) and S∗ : L2(∂D) → L2(∂D) are the L2

adjuncts of G and S respectively .

Proof. Define the operator H : L2(Ω) → L2(∂D) by

(Hg)(x) :=

∫

Ω

g(d)eikx·d ds(d).

Note that Hg is the Herglotz wave function with density g. The adjoint operator

H∗ : L2(∂D) → L2(Ω) is given by

(H∗ϕ)(x̂) =

∫

∂D

ϕ(y)e−ikx̂·y ds(y)
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and we note that 1
4πH

∗ϕ is the far field pattern of the single layer potential (3–9).

The single layer potential with continuous density ϕ is continuous in R3 and thus
1
4πH

∗ϕ = GSϕ , i.e. by a denseness argument

H = 4πS∗G∗ (3–10)

on L2(∂D). We now observe that Fg is the far field pattern of the solution to

the radiating exterior Dirichlet problem with boundary data −(Hg)(x), x ∈ ∂D,

and hence

Fg = −GHg. (3–11)

Substituting (3–10) into (3–11) now yields the lemma. ˜

We now assume that k2 is not a Dirichlet eigenvalue for D. Then by Theorems

3.2 and 3.4 the far field operator F is normal and injective. In particular, there

exists eigenvalues λj ∈ C of F, j = 1, 2, . . ., with λj 6= 0, and the corresponding

eigenfunctions ψj ∈ L2(ω) form a complete orthonormal system in L2(Ω). From

Lemma 3.3 we can deduce the fact that the λj all lie on the circle of radius 2π
k

and center 2πi
k . We also note that {|λj |, ψj , sign (λj)ψj} is a singular system for

F . By the preceding lemma,

−4πGS∗G∗λj = λjψj .

If we define the functions ϕj ∈ L2(∂D) by

G∗ψj = −
√

λjϕj ,

where we choose the branch of
√

λj such that Im
√

λj > 0, we see that

GS∗ϕj =

√

λj

4π
ψj . (3–12)

A central result of Kirsch is that the functions ϕj form a Riesz basis in the

Sobolev space H−1/2(∂D), i.e. H−1/2(∂D) consists exactly of functions ϕ of the

form

ϕ =

∞
∑

j=1

αjϕj with
∞
∑

j=1

|αj |2 <∞.

The proof of this result relies in a fundamental way on the normality of F . Using

these results we can now prove the main result of [42] where in the proof of the

theorem R(A) denotes the range of the operator A.

Theorem 3.9. Assume that k2 is not a Dirichlet eigenvalue for D. Then the

ranges of G : H1/2(∂D) → L2(Ω) and (F ∗F )
1
4 : L2(Ω) → L2(Ω) coincide.

Proof. We use the fact that S∗ : H−1/2(∂D) → H1/2(∂D) is an isomorphism.

Suppose Gϕ = ψ for some ϕ ∈ H1/2(∂D). Then (S∗)−1ϕ ∈ H−1/2(∂D) and thus

(S∗)−1ϕ =
∑∞

j=1 αjϕj with
∑∞

j=1 |αj |2 <∞. Therefore, by (3–12), we have

ψ = Gϕ = GS∗(S∗)−1ϕ =
1

4π

∞
∑

j=1

αj

√

λjψj =

∞
∑

j=1

ρjψj
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with ρj = 1
4παj

√

λj and thus

∞
∑

j=1

|ρj |2
|λj |

=
1

(4π)2

∞
∑

j=1

|αj |2 <∞. (3–13)

On the other hand, let ψ =
∑∞

j=1 ρjψj with the ρj satisfying (3–13) and define

ϕ :=
∑∞

j=1 αjϕj with αj = 4πρj/
√

λj . Then
∑∞

j=1 |αj |2 < ∞ and hence ϕ ∈
H−1/2(∂D), S∗ϕ ∈ H1/2(∂D), and

G(S∗ϕ) =
1

4π

∞
∑

j=1

αj

√

λjψj =
∞
∑

j=1

ρjψj = ψ.

Since
√

|λj | and ψj are the eigenvalues and eigenfunctions, respectively, of the

self-adjoint operator (F ∗F )
1
4 , we have

R(F ∗F )
1
4 =

( ∞
∑

j=1

ρjψj :
∞
∑

j=1

|ρj |2
|λj |

<∞
)

,

and, as we have shown above, this is precisely R(G). ˜

Since Φ∞(x̂, z) = 1
4π e

−ikx̂·z is the far field pattern of the fundamental solution

Φ(x, z), it is easy to verify that Φ∞( · , z) is in the range of G and if and only if

z ∈ D, i.e. (F ∗F )
1
4 g = Φ∞( · , z) is solvable if and only if z ∈ D. In particular, if

regularization methods are used to solve (F ∗F )
1
4 g = Φ∞( · , z) then from Section

2 of this paper we see that as the noise level on u∞ tends to zero the norm of the

regularized solution remains bounded if and only if z ∈ D. Numerical examples

using this procedure can be found in [10] and [42].

Under the assumption that k2 is not a Neumann eigenvalue, the equation

(F ∗F )
1
4 g = Φ∞( · , z) can also be derived for the determination of D, i.e. it is

not necessary to know a priori whether or not the boundary data is of Dirichlet or

Neumann type. However, in both cases the derivation of this equation depends

on F being a normal operator. In particular this excludes the limited aperature

case when Ω is replaced by a subset Ω0 of Ω as well as the case of impedance

boundary data. In an effort to avoid this problem, Kirsch has introduced a

simple nonlinear optimization scheme which preserves some of the advantages of

the second version of the linear sampling method while at the same time avoiding

the assumption of normality of F [44]. We will conclude this section of our paper

by describing Kirsch’s optimization scheme.

The optimization scheme of Kirsch is based on the following theorem.

Theorem 3.10. Let X1 be a (complex ) reflexive Banach space with dual X∗
1

and dual form 〈 · , · 〉1. Let X2 be a (complex ) Hilbert space with inner product

〈 · , · 〉2 and F : X2 → X2, B : X1 → X2, compact linear operators such that B is

injective. Suppose there exists a bounded linear operator A : X∗
1 → X1 such that

F = BAB∗ and

c1‖Aϕ‖2
1 ≤

∣

∣〈ϕ,Aϕ〉1
∣

∣≤ c2‖Aϕ‖2
1 (3–14)
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for all ϕ ∈ X∗
1 where c1 and c2 are positive constants. Then for any ϕ ∈ X2, ϕ 6=

0, ϕ ∈ R(BA∗) if and only if

inf
{∣

∣〈ψ,Fψ〉2
∣

∣: ψ ∈ X2, 〈ψ,ϕ〉2 = 1
}

> 0.

Proof. From (3–14), we have
∣

∣〈ψ,Fψ〉2
∣

∣ =
∣

∣〈B∗ψ, AB∗ψ〉1
∣

∣ ≥ c1‖AB∗ψ‖2,

for all ψ ∈ X2. Let ϕ = BA∗ϕ0 for some ϕ0 ∈ X∗
1 . Then for ψ ∈ X2 such that

〈ψ,ϕ〉2 = 1 we have

∣

∣〈ψ,Fψ〉2
∣

∣ ≥ c1‖AB∗ψ‖2
1 =

c1
‖ϕ0‖2

1

‖AB∗ψ‖2
1 ‖ϕ0‖2

1

≥ c1
‖ϕ0‖2

1

|〈ϕ0, AB
∗ψ〉1|2 =

c1
‖ϕ0‖|21

|〈BA∗ϕ0, ψ〉2|2 =
c1

‖ϕ0|21
> 0.

Now assume that ϕ 6= R(BA∗) and define the closed subspace V := {ψ ∈ X2 :

〈ψ,ϕ〉2 = 0}. We will show that AB∗(V ) is dense in R(A) = N(A∗)⊥. To see

this, let ϕ ∈ X∗
1 such that 〈ϕ,AB∗ψ〉1 = 0 for all ψ ∈ V . Then 〈BA∗ϕ,ψ〉2 = 0

for all ψ ∈ V , i.e., BA∗ϕ ∈ V ⊥ = span{ϕ}. Since ϕ ∈ R(BA∗) this implies that

BA∗ϕ = 0 and hence A∗ϕ = 0 by the injectivity of B. Therefore ϕ ∈ N(A∗) =

R(A)⊥ and hence AB∗(V ) is dense in R(A). We can therefore find a sequence

{ψ̂n} in V such that

AB∗ψ̂n → − 1

‖ϕ‖2
2

AB∗ϕ

as n→ ∞. We now set ψn = ψ̂n +ϕ/‖ϕ‖2
2. Then 〈ψn, ϕ〉2 = 1 and AB∗ψn → 0.

From (3–14) we have
∣

∣〈ψn, Fψn〉2
∣

∣ =
∣

∣〈B∗ψ,AB∗ψ〉1
∣

∣ ≤ c2‖AB∗ψn‖2
1

and hence 〈ψn, Fψn〉2 → 0 as n→ ∞, i.e.,

inf
{

|〈ψ,Fψ〉2| : ψ ∈ X2, 〈ψ,ϕ〉2 = 1
}

= 0. ˜

In order to make use of Theorem 3.10, Kirsch defines G : H1/2(∂D) → L2(Ω)

and S : H−1/2(∂D) → H1/2(∂D) as in Lemma 3.8 (with the indicated changes

in ranges and domains) and proves that if F : L2(Ω) → L2(Ω) is the far field op-

erator corresponding to the exterior Dirichlet problem (2–3) then we again have

the factorization F = 4πGS∗G∗. After showing that S∗ satisfies the coercivity

condition (3–14) if k2 is not a Dirichlet eigenvalue, and using the fact that in this

case S is an isomorphism, it is then possible to use Theorem 3.10 to conclude

that if k2 is not a Dirichlet eigenvalue we have

ϕ ∈ R(G) ⇐⇒ inf
{∣

∣〈ψ,Fψ〉L2(Ω)

∣

∣ : ψ ∈ L2(Ω), 〈ϕ,ψ〉L2(Ω) = 1
}

> 0.

Since z ∈ D if and only if Φ∞( · , z) ∈ R(G) we now have the following theorem

[44].
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Theorem 3.11. Assume that k2 is not a Dirichlet eigenvalue. Then

z ∈ D ⇐⇒ inf
{

|〈ψ,Fψ〉| : ψ ∈ L2(Ω), 〈Φ∞( · , z), ψ〉L2(Ω) = 1
}

> 0.

Theorem 3.11 leads in an obvious manner to a constrained optimization scheme

for determining when a point z ∈ R3 is in D [44]. Note that the proof of Theorem

3.11 does not rely on the normality of F .

4. The Inverse Medium Problem for Acoustic Waves

We will now turn our attention to inverse scattering problems associated with

the inhomogeneous medium problem (2–4) and ultimately the acoustic transmis-

sion problem (2–1). As in Section 3, we will focus our attention on the situation

where neither the material properties of the scatterer nor its shape are known.

Then it follows from the uniqueness theorems of Nachman [53] and Isakov [36],

[37]that for a single frequency the best that we can hope for is to determine the

shape D of the scatterer. In particular, in order to determine the coefficients

in (2–1b), either multi-frequency data is needed or an a priori knowledge of ei-

ther ρD(x) or n(x) is required. If such information is available then nonlinear

optimization techniques such as those described in Section 2 of this paper can

be used to determine the coefficients. Here we will restrict ourselves to a fixed

frequency and prove uniqueness theorems associated with the direct scattering

problems (2–1) and (2–4) as well as reconstruction algorithms for determining

D from the far field pattern u∞.

In the previous section we presented three different methods for determining

the shape D of the scatterer from a knowledge of the far field pattern associ-

ated with the exterior Dirichlet problem (2–3), in particular the two versions of

the linear sampling method based on F and (F ∗F )
1
4 respectively and the con-

strained optimization method based on Theorem 3.11. Each of these methods,

under appropriate assumptions, can be extended to the inverse scattering prob-

lem associated with the inhomogeneous medium problems (2–4) [12], [19], [43],

[44]. However, at the time of writing, only the linear sampling method asso-

ciated with the far field operator F has been extended to the general acoustic

transmission problem (2–1) [6], [7] and the case of Maxwell’s equations [11], [29],

[49]. Hence, in the interest of developing a unifying theme to our paper, we will

restrict our attention to the first version of the linear sampling method in order

to determine D.

We begin our discussion by considering the inhomogeneous medium problem

(2–4) and again define the far field operator F : L2(Ω) → L2(Ω) by

(Fg)(x̂) :=

∫

Ω

u∞(x̂, d)g(d) ds(d), (4–1)

where u∞ is the far field pattern of the scattered field us defined in (2–4). It is

again possible to establish the reciprocity relations (3–1) and (3–2). However,
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since Imn(x) ≥ 0, we cannot expect normality of F except in the case when

Imn(x) = 0. The question of when F is injective with dense range is addressed

by the following theorem, where the role of the interior Dirichlet problem in

Theorem 3.2 is now replaced by a new type of boundary value problem called

the homogeneous interior transmission problem.

Theorem 4.1. The far field operator F defined by (4–1) is injective with dense

range if and only if there does not exist w ∈ C2(D)∩C2(D̄) and a Herglotz wave

function v with kernel g 6= 0 such that v, w is a solution to the homogeneous

interior transmission problem

∆v + k2v = 0

∆w + k2n(x)w = 0

in D,

in D,
(4–2a)

v = w

∂w

∂ν

on ∂D,

on ∂D.
(4–2b)

Proof. As in the case of Theorem 3.2, it suffices to establish conditions for

when the far field operator is injective. To this end, we note that Fg = 0 with

g 6= 0 is equivalent to the vanishing of the far field pattern of ws where w is the

solution of (2–4) with ui a Herglotz wave function v with kernel g. By Rellich’s

lemma, ws = 0 in R3 \D, and hence if w = v + ws we have

w = v on ∂D,
∂w

∂ν
=
∂v

∂ν
on ∂D. ˜

An elementary application of Green’s theorem and the unique continuation prin-

ciple for elliptic equations shows (Theorem 8.12 of [14]) that if Imn(x0) > 0 for

some x0 ∈ D then the only solution of (4–2) is v = w = 0, i.e., in this case F is

injective with dense range. Knowing that the values of k for which the far field

operator is not injective form a discrete set is of considerable importance in the

inverse scattering problem associated with (2–4), just as it is in the case of the

obstacle problem (2–3) where it is known that the set of Dirichlet eigenvalues

forms a discrete set. In the case of the linear sampling method, for example, this

enables us to conclude that the method can fail only for a discrete set of values of

k. From Theorem 4.1 we see that F is injective if there does not exist a nontriv-

ial solution to the homogeneous interior transmission problem. Values of k for

which there exists a nontrivial solution to the homogeneous interior transmission

problem are called transmission eigenvalues. It was shown by Colton, Kirsch and

Päivärinta ([13] and Section 8.6 of [14]) and by Rynne and Sleeman [67] that if

there exists ε > 0 such that either n(x) ≥ 1 + ε for x ∈ D̄ or 0 < n(x) ≤ 1 − ε

for x ∈ D̄ then the set of transmission eigenvalues is discrete.

We now turn to the problem of the unique determination of n(x) in (2–4)

from a knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω. The original

proof of this result is due to Nachman [53], Novikov [57] and Ramm [66] and is
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based on the fundamental paper of Sylvester and Uhlmann [71]. Here we follow

a modification of the original proof due to Hähner [30] which is based on the

following two lemmas, where H2(B) denotes a Sobolev space.

Lemma 4.2. Let B be an open ball centered at the origin and containing the

support of m := 1−n. Then there exists a positive constant C such that for each

z ∈ C
3 with z · z = 0 and |Re z| ≥ 2k2‖n‖∞ there exists a solution w ∈ H2(B)

to ∆w + k2nw = 0 in B of the form

w(x) = eiz·x
(

1 + r(x)
)

,

where

‖r‖L2(B) ≤
C

|Re z| .

Lemma 4.3. Let B1 and B2 be two open balls entered at the origin and containing

the support of m := 1 − n such that B̄1 ⊂ B2. Then the set of total fields

{u( · , d), d ∈ Ω} satisfying (2–4) is complete in the closure of

H := {w ∈ C2(B̄2) : ∆w + k2nw = 0 in B2}

with respect to the norm in L2(B1).

We are now ready to prove the following uniqueness result for the inverse inho-

mogeneous medium problem (2–4).

Theorem 4.4. The coefficient n(x) in (2–4) is uniquely determined by a knowl-

edge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω.

Proof. Assume that n1 and n2 are such that u1,∞( · , d) = u2,∞( · , d), d ∈ Ω,

and let B1 and B2 be two open balls centered at the origin and containing the

supports of 1 − n1 and 1 − n2 such that B̄1 ⊂ B2. Then by Rellich’s lemma we

have u1( · , d) = u2( · , d) in R3 \ B̄1 for all d ∈ Ω. Hence u = u1 − u2 satisfies

u = ∂u/∂ν on ∂B1 and the differential equation

∆u+ k2n1u = k2(n2 − n1)u2

in B1. From this and the differential equation for ũ1 = u1( · , d̃), d̃ ∈ Ω, we obtain

k2ũ1u2(n2 − n1) = ũ1(∆u+ k2n1u) = ũ1∆u− u∆ũ1.

From Green’s theorem and the fact that the Cauchy data for u vanishes on ∂B1

we now have
∫∫

B1

u1( · , d̃)u2( · , d)(n1 − n2) dx = 0

for all d, d̃ ∈ Ω. It now follows from Lemma 4.3 that
∫∫

B1

w1w2(n1 − n2) dx = 0 (4–3)



94 DAVID COLTON

for all solutions w1, w2 ∈ C2(B̄2) of ∆w1 + k2n1w1 = 0 and ∆w2 + k2n2w2 = 0

in B2.

Given y ∈ R3 \ {0} and ρ > 0, we now choose vectors a, b ∈ R3 such that

{y, a, b} is an orthogonal basis in R3 with the properties that |a| = 1 and |b|2 =

|y|2 + ρ2. Then for z1 := y + ρa+ ib, z2 := y − ρa− ib we have

zj · zj = |Re zj |2 − |Im zj |2 + 2iRe zj · Im zj = |y|2 + ρ2 − |b|2 = 0

and |Re zj |2 = |y|2 + ρ2 ≥ ρ2. In (4–3) we now substitute the solutions w1

and w2 from Lemma 4.2 for the coefficients n1 and n2 and vectors z1 and z2,

respectively. Since z1 + z2 = 2y this gives
∫∫

B1

e2iy·x
(

1 + r1(x)
)(

1 + r2(x)
)(

n1(x) − n2(x)
)

dx = 0

and, passing to the limit as ρ→ ∞, gives
∫∫

B1

e2iy·x
(

n1(x) − n2(x)
)

dx = 0.

Since this equation is true for arbitrary y ∈ R3, by the Fourier integral theorem

we have n1(x) = n2(x) in B1 and the proof is finished. ˜

Before proceeding to reconstruction algorithms for determining the support of

m = 1 − n, we note that at the time of writing a uniqueness theorem for the

inverse inhomogeneous medium problem (2–4) in R2 analogous to Theorem 4.4

for the case of R3 is unknown. The problem in R2 is more difficult than the case

in R3 due to the fact that the inverse scattering problem for fixed frequency in R2

is not overdetermined as in the R3 case. i.e., in R2, u∞(x̂, d) is a function of two

variables and n(x) is also a function of two variables. Nevertheless, there have

been numerous partial results in this case due to Novikov [58], Sun and Uhlmann

[68], Isakov and Nachman [38], Isakov and Sun [39] and Eskin [25] among others.

We content ourselves here by stating a single result in this direction due to Sun

and Uhlmann [70] (see also [64]) which shows that the discontinuities of n are

uniquely determined from the far field pattern u∞. We note that in the R2 case

the radiation condition (2–4c) is replaced by

lim
r→∞

r1/2
(∂us

∂r
− ikus

)

= 0

and the asymptotic behavior (2–7) is replaced by

us(x) =
eikr

√
r
u∞(x̂, d) +O(r−3/2).

Theorem 4.5. Let n1 and n2 be in L∞(R2) and suppose m1 := 1−n1 and m2 :=

1 − n2 have compact support . Then if uj
∞ is the far field pattern corresponding

to nj for j = 1, 2 and u1
∞(x̂, d) = u2

∞(x̂, d) for all x̂, d on the unit circle Ω, then

n1 − n2 ∈ C0,α(R2) for every α, 0 ≤ α < 1.
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We now return to the three dimensional inverse scattering problem associated

with (2–4). Given the fact that n(x) is uniquely determined from u∞, we can

now attempt to reconstruct n(x) by using nonlinear optimization techniques as

discussed in Section 2 of this paper. (A reconstruction procedure for determining

n based on the techniques used in the uniqueness Theorem 4.4 has been given

by Nachman [53] and Novikov [57] although it is not clear whether or not this

leads to a viable numerical procedure.) However, a reconstruction of n(x) is

often more than is necessary. Indeed, it is frequently sufficient to determine the

support of m = 1−n and, as mentioned at the beginning of this section, for fixed

frequency and the more general acoustic transmission problem this is essentially

all the information that can be extracted from the far field data u∞. We will

now proceed to show how the linear sampling method can be used to determine

the support D of m := 1 − n basing our analysis on the ideas of Colton and

Kirsch [12] and Colton, Piana and Potthast [19]. In order to avoid the problem

of transmission eigenvalues, we will limit our attention to the case when there

exists a positive constant c such that

Imn(x) ≥ c (4–4)

for x ∈ D where D̄ is the support of m = 1 − n. If instead of (4–4) we have

Imn(x) = 0 for x ∈ D, the analysis that follows remains valid if we assume that

k is not a transmission eigenvalue.

The derivation of the linear sampling method for the inverse scattering prob-

lem associated with (2–4) is based on a projection theorem for Hilbert spaces

where the inner product is replaced by a bounded sesquilinear form together with

an analysis of a special inhomogeneous interior transmission problem. We begin

with the projection theorem. Let X be a Hilbert space with the scalar product

( · , ·) and norm ‖ · ‖ induced by ( · , ·) and let 〈 · , · 〉 be a bounded sesquilinear

form on X such that
∣

∣〈ϕ,ϕ〉
∣

∣ ≥ C‖ϕ‖2

for all ϕ ∈ X where C is a positive constant. Then, using the Lax–Milgram

theorem, it is easy to prove the following theorem ([19], Theorem 10.22 in [14])

where ⊕s is the orthogonal decomposition with respect to the sesquilinear form

〈 · , · 〉 and H⊥s is the orthogonal complement of H with respect to 〈 · , · 〉.

Theorem 4.6. For every closed subspace H̄ ⊂ X we have the orthogonal de-

composition

X = H⊥s ⊕s H̄.

The projection operator P : X → H⊥s defined by this decomposition is bounded

in X.

We now turn our attention to the problem of showing the existence of a unique

weak solution v, w of the interior transmission problem

∆v + k2v = 0 in D, (4–5)
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∆w + k2n(x)w = 0 in D,

w − v = Φ( · , z) on ∂D,

∂w

∂ν
− ∂v

∂ν
=

∂

∂ν
Φ ( · , z) on ∂D,

where z ∈ D, n is assumed to satisfy (4–4) and Φ as usual is defined by (2–6).

To motivate the following definition of a weak solution of (4–5), we note that if

a solution v, w ∈ C2(D)∩C1(D̄) to (4–5) exists, then from Green’s formula and

Rellich’s lemma we have

w(x) + k2

∫∫

D

Φ(x, y)m(y)w(y) dy = v(x) for x ∈ D,

−k2

∫∫

D

Φ(x, y)m(y)w(y) dy = Φ(x, z) for x ∈ ∂B,

where B is a ball centered at the origin with D̄ ⊂ B.

Definition 4.7. Let H be the linear space of all Herglotz wave functions and

H̄ the closure of H in L2(D). For ϕ ∈ L2(D) define the volume potential by

(Tϕ)(x) :=

∫∫

D

Φ(x, y)m(y)ϕ(y) dy, x ∈ R3.

Then a pair v, w with v ∈ H̄ and w ∈ L2(D) is said to be a weak solution of the

interior transmission problem (4–5) with source point z ∈ D if v and w satisfy

the integral equation

w + k2Tw = v

and the boundary condition

−k2Tw = Φ( · , z) on ∂B.

The uniqueness of a weak solution to the interior transmission problem follows

from a limiting argument using (4–4) and a simple application of Green’s theorem

[19], [14, Theorem 10.24]. To prove existence we will use Theorem 4.6 applied

to the sesquilinear form in L2(D) defined by

〈ϕ,ψ〉 :=

∫∫

D

m(y)ϕ(y)ψ(y) dy

and H as defined in the above definition.

Theorem 4.8. For every source point z ∈ D there exists a weak solution to the

interior transmission problem.

Proof. By a translation we can assume without loss of generality that z = 0.

We consider the space

H0
1 = span

{

jp(k|x|)Y q
p (x̂), p = 1, 2, . . . , −p ≤ q ≤ p

}
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and the closure H1 of H0
1 in L2(D), where jp is a spherical Bessel function

and Y q
p is a spherical harmonic. It can be shown that there exists a nontrivial

ψ ∈ H⊥s

1 ∩ H̄ such that 〈j0, ψ〉 6= 0.

Now let P be the projection operator from L2(D) onto H⊥s as defined by

Theorem 4.6. We first consider the integral equation

u+ k2PTu = k2PTψ (4–6)

in L2(D). Since T is compact and P is bounded, the operator PT is compact

in L2(D). Hence to establish the existence of a solution to (4–6) we must prove

uniqueness for the homogeneous equation. To this end, assume that w ∈ L2(D)

satisfies

w + k2Tw = v.

Since 〈w,ϕ〉 = 0 for all ϕ ∈ H, from the addition formula for Bessel functions we

conclude that Tw = 0 on ∂B. Hence, by uniqueness for the weak interior trans-

mission problem we have v = w = 0, and we obtain the continuous invertibility

of I + k2PT in L2(D).

Now let u be the unique solution to (4–6) and note that u ∈ H⊥s . We define

the constant c and function w ∈ L2(D) by

c := − 1

k2〈j0, ψ〉
, w := c(u− ψ).

Then we compute

w + k2PTw = −cψ
and hence

w + k2Tw = v

where v := k2(I − P )Tw − cψ ∈ H̄. Since

〈h,w〉 = c 〈h, u− ψ〉 = 0

for all h ∈ H1 and

〈j0, w〉 = c 〈j0, u−ψ〉 = − 1

k2
,

we have from the addition formula for Bessel functions that

−k2(Tw)(x) = ikh
(1)
0 (k|x|) = Φ(x, 0), x ∈ ∂B,

where h
(1)
0 is a spherical Hankel function of the first kind of order zero, and the

proof is complete. ˜

Having Theorem 4.8 at our disposal, we can now establish the linear sampling

method for determining D. In particular, we again consider the far field equation

Fg = Φ∞( · , z), that is,
∫

Ω

u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z), (4–7)
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where Φ∞( · , z) is the far field pattern of the fundamental solution Φ( · , z). Fol-

lowing the proof of Theorem 4.1 we see that (4–7) has a solution if and only

if z ∈ D and the interior transmission problem (4–5) has a solution v, w ∈
C2(D) ∩ C1(D̄) such that v is a Herglotz wave function with kernel g. This is

only true in very special cases. However, by Theorem 4.8 we know there exists a

(unique)weak solution v, w to the interior transmission problem and that v can

be approximated in L2(D) by a Herglotz wave function. This fact then enables

us to establish a result for the far field equation (4–7) that is analogous to The-

orem 3.7 for the far field equation (3–7) corresponding to the exterior Dirichlet

problem [4] (Later on in this section we shall outline how this is done for the

general case of an anisotropic medium). Note that the far field equations (3–7)

and (4–7) are exactly the same except of course that the far field pattern u∞ ap-

pearing in the kernel of F come from different scattering problems. This means

that in order to determine the support D of the scatterer it is not necessary to

know a priori whether the direct scattering problem is (2–3) or (2–4) or, as previ-

ously noted, (2–2). In particular, one can determine the support of the scatterer

without a priori knowledge on whether or not the scattering object is penetrable

or impenetrable, at least in the context of the three scattering problems (2–2),

(2–3) and (2–4). In the remaining part of this section we will extend this ob-

servation to include the general acoustic transmission problem (2–1) and in fact

consider the even more general case of anisotropic media. As with the case of

the inhomogeneous medium problem (2–4), the basic ingredient will again be an

analysis of an interior transmission problem, this time for anisotropic media.

Let D ⊂ R3 be a bounded domain having C2 boundary ∂D with unit outward

normal ν. Let A be a 3 × 3 matrix-valued function whose entries ajk (j =

1, 2, 3, k = 1, 2, 3) are continuously differentiable functions in D̄, such that A is

symmetric and satisfies

ξ̄ · (ImA)ξ ≤ 0, ξ̄ · (ReA)ξ ≥ γ|ξ|2 (4–8)

for all ξ ∈ C
3 and x ∈ D̄, where γ is a positive constant. For a function

u ∈ C1(D̄) we define the conormal derivative by

∂u

∂νA
(x) := ν(x) ·A(x)∇u(x) for x ∈ ∂D

and let k > 0 again be the wave number and let n ∈ C(D̄) satisfy Ren > 0 and

Imn ≥ 0. The anisotropic acoustic transmission problem, for which (2–1) is the

special case of an isotropic medium, is to find u ∈ C2(R3 \ D̄)∩C1(R3 \D) and

v ∈ C2(D) ∩ C1(D̄) such that

∆u+ k2u = 0 in R3 \ D̄, (4–9a)

∇ ·A∇v + k2n(x)v = 0 in D, (4–9b)

u = ui + us, (4–9c)
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lim
r→∞

r
(

∂us

∂r
− ikus

)

= 0, (4–9d)

u = v on ∂D, (4–9e)

∂u

∂ν
=

∂v

∂νA
on ∂D, (4–9f)

where again ui(x) = eikx·d. The existence of a unique solution to (4–9) has been

established by Hähner [31].

Since u satisfies the radiation condition, we can again conclude that us has

the asymptotic behavior

us(x) =
eikr

r
u∞(x̂, d) +O(r−2).

The inverse scattering problem we are concerned with is to determine D from a

knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω. We note that the matrix

A is not uniquely determined by u∞ (see [27], [61]) and hence determinning D

is the most that can be hoped for. To this end we have the following theorem

due to Hähner [31] (see also [17] and [61]).

Theorem 4.9. Assume γ > 1. Then D is uniquely determined by u∞(x̂, d) for

x̂, d ∈ Ω.

The proof of this theorem uses the ideas of Theorem 3.5 together with a continu-

ous dependence result for an associated interior transmission problem. It follows

from the results of Cakoni and Haddar [7] that Theorem 4.9 remains valid if the

condition γ > 1 is replaced by the condition

ξ̄ · (ReA−1)ξ ≥ µ|ξ|2 (4–10)

for all ξ ∈ C
3 and x ∈ D̄ where µ is a positive constant such that µ > 1. The

isotropic case when A = I is handled by Theorem 4.4.

Given the uniqueness Theorem 4.9 (and the variations on this theorem indi-

cated above)we now want to establish the linear sampling method for determining

D. In particular, we look for a (regularized) solution g ∈ L2(Ω) of the far field

equation

(Fg)(x̂) :=

∫

Ω

u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z) (4–11)

where z ∈ R3 is an artificially introduced parameter point and u∞ is the far

field pattern of the scattered field defined by (4–9). Following the proof of

Theorem 4.1 it is easily verified that (4–11) is solvable if and only if z ∈ D and

v, w ∈ C2(D) ∩ C1(D̄) is a solution of the interior transmission problem

∆v + k2v = 0

∇ ·A∇w + k2nw = 0

in D,

in D,
(4–12a)
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w − v = Φ( · , z)
∂w

∂νA
− ∂v

∂ν
=

∂

∂ν
Φ( · , z)

on ∂D,

on ∂D,
(4–12b)

such that v is a Herglotz wave function. Values of k for which a nontrivial

solution to the homogeneous interior transmission problem (Φ = 0) exists are

again called transmission eigenvalues. As in the case of an isotropic medium,

our aim is to now study the interior transmission problem (4–12) with the aim

of showing that, roughly speaking, D can be characterized as the set of points

z ∈ R3 where an arbitrarily good approximation of the solution to the far field

equation (4–4) remains bounded (see Theorem 3.7).

We begin with uniqueness. The following theorem follows easily by an appli-

cation of Green’s theorem.

Theorem 4.10. If either Imn > 0 or ξ̄ · (ImA)ξ < 0 in a neighborhood of a

point x0 ∈ D, then (4–12) has at most one solution.

In order to study the solvability of (4–12) we first consider a modified interior

transmission problem which is a compact perturbation of (4–12). In particu-

lar, let m ∈ C(D̄) satisfy m(x) > 0 for x ∈ D̄ and for l1, l2 ∈ L2(D), f ∈
H1/2(∂D), h ∈ H−1/2(∂D) we want to find v, w ∈ H1(D) such that

∆v + k2v = l1

∇ ·A∇w −mw = l2

in D,

in D,
(4–13a)

w − v = f

∂w

∂νA
− ∂v

∂ν
= h

on ∂D,

on ∂D.
(4–13b)

In [6], (4–13) is reformulated as a variational problem for (w,v) ∈ H 1(D) ×
W (D) where v = ∇v and

W (D) := {v ∈ (L2(D))3 : ∇ · v ∈ L2(D) and curl v = 0}.

The variational problem is then solved by appealing to the Lax–Milgram theorem

under the assumption that in (4–8) we have γ > 1 andm > γ. Having established

the existence of a unique solution to (4–13), and using the fact that (4–13) is a

compact perturbation of the interior transmission problem (4–12), we can now

appeal to Theorem 4.10 to deduce the following theorem [5].

Theorem 4.11. Assume that either Imn > 0 or ξ̄·(ImA)ξ < 0 in a neighborhood

of a point x0 ∈ D and that γ > 1. Then (4–12) has a unique solution v, w ∈
H1(D)×H1(D) where the boundary data (4–12b) is assumed in the sense of the

trace operator .

It was shown in [7] that Theorem 4.11 remains valid if the condition γ > 1

is replaced by the condition (4–10) where µ > 1 (In this case m is a constant

restricted to satisfy µ−1 ≤ m < 1).
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If A and n do not satisfy one of the above assumptions (γ > 1 in (4–8) or

µ > 1 in (4–10)) then in general we cannot conclude the solvability of the interior

transmission problem (4–12). In particular, (4–12) is uniquely solvable if and

only if k is not a transmission eigenvalue and if Imn = 0 and ImA = 0 it is not

possible to exclude this possibility. However, from the point of view of applying

regularization techniques to the far field equation (4–11), it is important to have

F injective with dense range and this is true if k is not a transmission eigenvalue.

To this end the following theorem is important [5], [7].

Theorem 4.12. Assume that Imn = 0 and ImA = 0 in D and that one of the

following conditions is satisfied :

(1) γ > 1 in (4–8) and n(x) ≥ γ for x ∈ D, or

(2) µ > 1 in (4–10) and n is a constant such that µ−1 ≤ n < 1.

Then the set of transmission eigenvalues forms a discrete set .

The proof of Theorem 4.12 is based on the uniqueness of a solution to the mod-

ified interior transmission problem (4–13) together with the fact that the spec-

trum of a compact operator is discrete. At the time of writing it is not known

whether or not transmission eigenvalues exist except for the special case when

A = I (isotropic media) and n(x) = n(r) is spherically symmetric; see [14,

Theorem 8.13].

We now turn our attention to showing how Theorems 4.11 and 4.12 lead

to a justification of the linear sampling method for anisotropic media that is

analogous to Theorem 3.7 for the case of the exterior Dirichlet problem. To

this end we let B be the bounded linear operator from H1/2(∂D) ×H−1/2(∂D)

into L2(Ω) which maps (f, h) ∈ H1/2(∂D) ×H−1/2(∂D) onto the far field data

u∞ ∈ L2(Ω) of the solution of the transmission problem

∆us + k2us = 0 in R3 \ D̄, (4–14a)

∇ ·A∇v + k2n(x)v = 0 in D, (4–14b)

lim
r→∞

r
(

∂us

∂r
− ikus

)

= 0, (4–14c)

v − us = f on ∂D, (4–14d)

∂v

∂νA
− ∂us

∂ν
= h on ∂D, (4–14e)

where us ∈ H1
loc(R

3 \ D̄) and v ∈ H1(D). It is shown in [5] that the range of

B is dense in L2(Ω). However, B is not injective. To remedy this problem, we

define the subset H(∂D) of H1/2(∂D) ×H−1/2(∂D) by

H(∂D) :=

{

(

v|∂D,
∂v

∂ν
|∂D

)

: v ∈ H

}

,

where H := {v ∈ H1(D) : ∆v+ k2v = 0 in D}. Then H(∂D) equipped with the

induced norm from H1/2(∂D) ×H−1/2(∂D) is a Banach space and if B0 is the
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restriction of B to H(∂D) we conclude that for k not a transmission eigenvalue

B0 : H(∂D) → L2(Ω) is injective, compact and has dense range [5].

We now write the far field equation (4–11) in the form

−B0Hg = Φ∞( · , z)

where Hg denotes the traces (vg|∂D, ∂vg/∂ν|∂D) for vg a Herglotz wave function

with kernel g. Using the facts that 1) Herglotz wave functions with kernels

g ∈ L2(Ω) are dense in H with respect to the norm in H1(D) and 2) Φ( · , z)
is in the range of B0 if and only if z ∈ D, we can now deduce the analogue of

Theorem 3.7 for anisotropic media under the assumption that either γ > 1 in

(4–8) or µ > 1 in (4–10) and k is not a transmission eigenvalue [5], [7]. As in

the case of Theorem 3.7 for the exterior Dirichlet problem,this result now yields

a numerical procedure for determining the support D of an anisotropic object

from noisy far field data.

Partial results related to the above for the case when A = I on ∂D but A 6= I

in D can be found in Chapter 7 of [62].

5. The Inverse Scattering Problem for Electromagnetic Waves

In this final section of our survey paper on inverse scattering problems for

acoustic and electromagnetic waves we consider the scattering of a time harmonic

electromagnetic wave by either a perfectly conducting obstacle or an isotropic

inhomogeneous medium of compact support. We begin with the scattering of a

time harmonic electromagnetic plane wave by a perfectly conducting obstacle.

Let D be a bounded domain in R3 with connected complement such that ∂D is

in class C2 and ν is the unit outward normal to ∂D. Then the direct scattering

problem we are concerned with can be formulated as the problem of finding an

electric field E and a magnetic field H such that E,H ∈ C1(R3 \ D̄)∩C(R3 \D)

and

curlE − ikH = 0 in R3 \ D̄,
curlH + ikE = 0 in R3 \ D̄,

(5–1a)

with

ν ×E = 0 on ∂D (5–1b)

and

E = Ei + Es, H = Hi +Hs, (5–1c)

where Es,Hs represent the scattered field satisfying the Silver–Müller radiation

condition

lim
r→∞

(Hs × x− rEs) = 0 (5–1d)



INVERSE ACOUSTIC AND ELECTROMAGNETIC SCATTERING THEORY 103

uniformly in x̂ = x/|x| (with r = |x|), and the incident field E i,Hi is given by

Ei(x) =
i

k
curl curl peikx·d = ik(d× p) × deikx·d, (5–1e)

Hi(x) = curl peikx·d = ikd× peikx·d, (5–1f)

where the wave number k is positive, d is a unit vector giving the direction of

propagation and p is the polarization vector. The existence and uniqueness of

a solution to (5–1) is well known [14]. From the Stratton–Chu formula [14] it

follows from (5–1) that Es has the asymptotic behavior

Es(x) =
eikr

r
E∞(x̂, d, p) +O(r−2), (5–2)

where E∞ is the electric far field pattern of the scattered electric field Es. Note

that since we are always assuming that k is fixed we have suppressed the depen-

dence of E∞ on k. It can easily be verified [14] that E∞ is infinitely differentiable

as a function of x̂ and d, linear with respect to p and as a function of x̂ is tan-

gential to the unit sphere Ω.

We now turn our attention to the scattering of the electromagnetic plane

wave (5–1e), (5–1f) by an inhomogeneous medium of compact support. In this

case, under appropriate assumptions [14], our problem is to find E,H ∈ C1(R3)

satisfying

curlE − ikH = 0

curlH + ikn(x)E = 0
in R3, (5–3a)

where n satisfies C2,α(R3) for some 0 < α < 1, Ren > 0, Imn ≥ 0, 1 − n has

compact support D̄; and where

E = Ei + Es, H = Hi +Hs (5–3b)

such that Ei,Hi is given by (5–1e), (5–1f) and Es,Hs again satisfies the Silver–

Müller radiation condition

lim
r→∞

(Hs × x− rEs) = 0 (5–3c)

uniformly in x̂. The existence and uniqueness of a solution to (5–3) is again well

known [14] and Es can be shown to have the asymptotic behavior (5–2).

We are now in a position to define the electric far field operator and its

connection to what are called electromagnetic Herglotz pairs. To this end, we

define the Hilbert space T 2(Ω) by

T 2(Ω) := {a : Ω → C
3 : a ∈ L2(Ω), a · x̂ = 0 for x̂ ∈ Ω}.

The electric far field operator F : T 2(Ω) → T 2(Ω) is then defined by

(Fg)(x̂) :=

∫

Ω

E∞(x̂, d, g(d)) ds(d), x̂ ∈ Ω (5–4)
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where g ∈ T 2(Ω). We note that F is a compact linear operator on T 2(Ω). An

electromagnetic Herglotz pair is a pair of vector fields of the form

E(x) =

∫

Ω

eikx·da(d) ds(d), H(x) =
1

ik
curlE(x), (5–5)

for x ∈ R3 where a ∈ T 2(Ω) is the kernel of E,H. In particular, Fg is the

electric far field pattern for (5–1) or (5–3) respectively corresponding to the

electromagnetic Herglotz pair with kernel ikg as incident field.

As in the case of the inverse scattering problem for acoustic waves, of basic

importance is the fact that F is injective with dense range. The proof of the

following two theorems and corollary follows along the same lines as previously

discussed for the case of acoustic waves [14]. Recall that a Maxwell eigenfunction

for D is a solution of Maxwell’s equations (5–1a) in D satisfying (5–1b) on ∂D.

Theorem 5.1. The electric far field operator for (5–1) is injective with dense

range if and only if there does not exist a Maxwell eigenfunction for D which is

an electromagnetic Herglotz pair .

Theorem 5.2. The electric far field operator for (5–3) is injective with dense

range if and only if there does not exist E1,H1 ∈ C1(D) ∩C(D̄) and an electro-

magnetic Herglotz pair E0,H0 with kernel a 6= 0 such that E0,H0 and E1,H1 is

a solution to the homogeneous electromagnetic interior transmission problem

curlE0 − ikH0 = 0,

curlE1 − ikH1 = 0,

ν × (E1 − E0) = 0,

curlH0 + ikE0 = 0

curlH1 + ikn(x)E1 = 0

in D,

in D,
(5–6a)

ν × (H1 −H0) = 0 on ∂D. (5–6b)

Corollary 5.3. If there exists an x0 ∈ D such that Imn(x0) > 0 then the

electric far field operator for (5–3) is injective with dense range.

Proceeding as in our discussion of acoustic waves, the next topic we consider is

the uniqueness of the solution to the inverse scattering problem for (5–1) and

(5–3) respectively. In particular, for (5–1) we want to determine whether or

not a knowledge of E∞ for fixed k uniquely determines D and in the case of

(5–3) whether or not a knowledge of E∞for fixed k uniquely determines n(x).

To this end, we have the following theorems due to Colton and Kress [14] and

Colton and Päivärinta [18] respectively. The proofs of both results are similar

to the corresponding proofs in the acoustic case already discussed. However, for

the inverse scattering problem associated with (5–3), serious technical problems

arise due to the fact that we must now construct a solution E,H of (5–3a) such

that E has the form

E(x) = eiζ·x
(

η +Rζ(x)
)

where ζ, η ∈ C
3, η · ζ = 0 and ζ · ζ = k2 and, in contrast to the case of acoustic

waves, it is no longer true that Rζ decays to zero as |ζ| tends to infinity. For

details of how this difficulty is resolved we refer the reader to [18] and [33]. We
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also note that the scattering problem (5–3) corresponds to the case when the

magnetic permeability µ is constant and for uniqueness results in the case when

µ is no longer constant see [59], [60] and [69].

Theorem 5.4. Assume that D1 and D2 are two domains such that the electric

far field patterns corresponding to the scattering problem (5–1) coincide for all

incident directions d ∈ Ω and all polarizations p ∈ R3. Then D1 = D2.

Theorem 5.5. The coefficient n(x) in (5–3) is uniquely determined by a knowl-

edge of the electric far field pattern for all incident directions d ∈ Ω and all

polarizations p ∈ R3.

Having determined the uniqueness of a solution to the inverse scattering prob-

lem, the next step is to derive reconstruction algorithms which are numerically

viable. It is here that the theory for electromagnetic waves lags well behind that

for acoustic waves. In particular, although methods based on the weak scattering

approximation have been used extensively, particularly in problems associated

with synthetic aperature radar [3], [8], the nonlinear problem has only begun to

be considered. Notable accomplishments in the case of nonlinear optimization

techniques to solve the inverse scattering problem associated with (5–1) have

been achieved by Haas, et.al [28] and Maponi, et.al [52] whereas the case of non-

linear optimization techniques to solve the inverse scattering problem associated

with (5–3) have recently been considered by Dorn, et.al [23]. Finally, based on

Theorems 5.1 and 5.2 and the approximation properties of electromagnetic Her-

glotz pairs, Colton, Haddar and Monk [11] and Haddar and Monk [29] have used

the linear sampling method to solve inverse scattering problems associated with

(5–1) and (5–3) respectively. However, there is much to be done and we close

this survey with a short list of open problems that await the input of new ideas

for their solution:

(1) Extend the methods of Kirsch for acoustic waves discussed in Section 3 of

this survey to the case of electromagnetic waves. For initial steps in this

direction, see [49].

(2) Show that the set of transmission eigenvalues for the homogeneous electro-

magnetic interior transmission problem form a discrete set.

(3) Show that for the case of electromagnetic waves the support of an inhomo-

geneous anisotropic media in R3 is uniquely determined by the corresponding

electric far field pattern.

(4) Establish the mathematical basis of the linear sampling method for Maxwell’s

equations for an anisotropic medium. For partial results in a special case, see

[62, Section 7.4].
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