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A Symmetric Strategy

in Graph Avoidance Games

FRANK HARARY, WOLFGANG SLANY, AND OLEG VERBITSKY

Abstract. In the graph avoidance game two players alternately color the
edges of a graph G in red and in blue respectively. The player who first
creates a monochromatic subgraph isomorphic to a forbidden graph F loses.
A symmetric strategy of the second player ensures that, independently of
the first player’s strategy, the blue and the red subgraph are isomorphic
after every round of the game. We address the class of those graphs G that
admit a symmetric strategy for all F and discuss relevant graph-theoretic
and complexity issues. We also show examples when, though a symmetric
strategy on G generally does not exist, it is still available for a particular F .

1. Introduction

In a broad class of games that have been studied in the literature, two players,

A and B, alternately color the edges of a graph G in red and in blue respectively.

In the achievement game the objective is to create a monochromatic subgraph

isomorphic to a given graph F . In the avoidance game the objective is, on the

contrary, to avoid creating such a subgraph. Both the achievement and the

avoidance games have strong and weak versions. In the strong version A and

B both have the same objective. In the weak version B just plays against A,

that is, tries either to prevent A from creating a copy of F in the achievement

game or to force such creation in the avoidance game. The weak achievement

game, known also as the Maker-Breaker game, is most studied [4; 1; 13]. Our

paper is motivated by the strong avoidance game [7; 5] where monochromatic

F -subgraphs of G are forbidden, and the player who first creates such a subgraph

loses.
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The instance of a strong avoidance game with complete graphs G = K6 and

F = K3 is well known under the name SIM [15]. Since for any edge bicoloring of

K6 there is a monochromatic K3, a draw in this case is impossible. It is proven

in [12] that a winning strategy in SIM is available for B. A few other results

for small graphs are known [7]. Note that, in contrast to the weak achievement

games, if B has a winning strategy in the avoidance game on G with forbidden

F and if G is a subgraph of G′, then it is not necessary that B also has a winning

strategy on G′ with forbidden F . Recognition of a winner seems generally to

be a nontrivial task both from the combinatorial and the complexity-theoretic

point of view (for complexity issues see, e.g., [16]).

In this paper we introduce the notion of a symmetric strategy1 for B. We say

that B follows a symmetric strategy on G if after every move of B the blue and

the red subgraphs are isomorphic, regardless of A’s strategy. As easily seen, if B
plays so, he at least does not lose in the avoidance game on G with any forbidden

F . There is a similarity with the mirror-image strategy of A in the achievement

game [2]. However, the latter strategy is used on two disjoint copies of the

complete graph, and therefore in our case things are much more complicated.

We address the class Csym of those graphs G on which a symmetric strategy

for B exists. We observe that Csym contains all graphs having an involutory

automorphism without fixed edges. This subclass of Csym, denoted by Cauto,

includes even paths and cycles, bipartite complete graphs Ks,t with s or t even,

cubes, and the Platonic graphs except the tetrahedron. We therefore obtain

a lot of instances of the avoidance game with a winning strategy for B. More

instances can be obtained based on closure properties of Cauto that we check with

respect to a few basic graph operations.

Nevertheless, recognizing a suitable automorphism and, therefore, using the

corresponding symmetric strategy is not easy. Based on a related result of Lubiw

[11], we show that deciding membership in Cauto is NP-complete.

We then focus on games on complete graphs. We show that Kn is not in Csym

for all n ≥ 4. Moreover, for an arbitrary strategy of B, A is able to violate the

isomorphism between the red and the blue subgraphs in at most n − 1 moves.

Nevertheless, we consider the avoidance game on Kn with forbidden P2, a path

of length 2, and point out a simple symmetric strategy making B the winner.

This shows an example of a graph G for which, while a symmetric strategy

in the avoidance game does not exist in general, it does exist for a particular

forbidden F .

The paper is organized as follows. Section 2 contains the precise definitions.

In Section 3 we compile the membership list for Csym and Cauto. In Section 4

we investigate the closure properties of Csym and Cauto with respect to various

graph products. In Section 5 we prove the NP-completeness of Cauto. Section 6

analyses the avoidance game on Kn with forbidden P2.

1Note that this term has been used also in other game-theoretic situations (see, e.g., [14]).
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2. Definitions

We deal with two-person positional games of the following kind. Two players,

A and B, alternately color the edges of a graph G in red and in blue respectively.

Player A starts the game. In a move a player colors an edge that was so-far

uncolored. The i-th round consists of the i-th move of A and the i-th move of

B. Let ai (resp. bi) denote an edge colored by A (resp. B) in the i-th round.

A strategy for a player determines the edge to be colored by him at every round

of the game. Formally, let ε denote the empty sequence. A strategy of A is a

function S1 that maps every possibly empty sequence of distinct edges e1, . . . , ei

into an edge different from e1, . . . , and ei and from S1(ε), S1(e1), S1(e1, e2), . . . ,

and S1(e1, . . . , ei−1). A strategy of B is a function S2 that maps every nonempty

sequence of distinct edges e1, . . . , ei into an edge different from e1, . . . , and ei

and from S2(e1), S2(e1, e2), . . . , and S2(e1, . . . , ei−1). If A follows a strategy S1

and B follows a strategy S2, then ai = S1(b1, . . . , bi−1) and bi = S2(a1, . . . , ai).

Let Ai = {a1, . . . , ai} (resp. Bi = {b1, . . . , bi}) consist of the red (resp. blue)

edges colored up to the i-th round. A symmetric strategy of B on G ensures

that, regardless of A’s strategy, the subgraphs Ai and Bi are isomorphic for

every i ≤ m/2, where m is the number of edges of G.

The class of all graphs G on which B has a symmetric strategy will be denoted

by Csym.

Suppose that we are given graphs G and F and that F is a subgraph of G.

The avoidance game on G with a forbidden subgraph F or, shortly, the game

AVOID(G,F ) is played as described above with the following ending condition:

The player who first creates a monochromatic subgraph of G isomorphic to F

loses.

Note that a symmetric strategy of B on G is nonlosing for B in AVOID(G,F ),

for every forbidden F . Really, the assumption that B creates a monochromatic

copy of F implies that such a copy is already created by A earlier in the same

round.

3. Automorphism-based strategy

Recall that the order of a graph is its number of vertices and the size of a graph

is its number of edges. Given a graph G, we denote its vertex set by V (G) and

its edge set by E(G). An automorphism of a graph G is a permutation of V (G)

that preserves the vertex adjacency. Recall that the order of a permutation is

the minimal k such that the k-fold composition of the permutation is the identity

permutation. In particular, a permutation of order 2, also called an involution,

coincides with its inversion. We call an automorphism of order 2 involutory.

The symmetric strategy can be realized if a graph G has an involutory auto-

morphism that moves every edge. More precisely, an automorphism φ : V (G) →

V (G) determines a permutation φ′ : E(G) → E(G) by φ′({u, v}) = {φ(u), φ(v)}.
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We assume that φ is involutory and φ′ has no fixed element. In this case, when-

ever A chooses an edge e, B chooses the edge φ′(e). This strategy of B is well

defined because E(G) is partitioned into 2-subsets of the form {e, φ′(e)}. This

strategy is really symmetric because after completion of every round φ induces

an isomorphism between the red and the blue subgraphs. We will call such a

strategy automorphism-based.

Definition 3.1. Cauto is a subclass of Csym consisting of all those graphs G on

which B has an automorphism-based symmetric strategy.

We now list some examples of graphs in Cauto.

Example 3.2 (Graphs in Cauto). (i) Pn, a path of length n, if n is even.

(ii) Cn, a cycle of length n, if n is even.

(iii) Four Platonic graphs excluding the tetrahedron.

(iv) Cubes of any dimension.2

(v) Antipodal graphs (in the sense of [3]) of size more than 1. Those are con-

nected graphs such that for every vertex v, there is a unique vertex v̄ of maximum

distance from v. The correspondence φ(v) = v̄ is an automorphism [9]. As eas-

ily seen, it is involutory and has no fixed edge. The class of antipodal graphs

includes the graphs from the three preceding items.

(vi) Ks,t, a bipartite graph whose classes have s and t vertices, if st is even.

(vii) Ks,t − e, that is, Ks,t with an edge deleted, provided st is odd.

(viii) Kn, a complete graph on n vertices, with a matching of size bn/2c deleted.

Note that in this and the preceding examples, for all choices of edges to be

deleted, the result of deletion is the same up to an isomorphism.

It turns out that a symmetric strategy is not necessarily automorphism-based.

Theorem 3.3. Cauto is a proper subclass of Csym.

Below is a list of a few separating examples.

Example 3.4 (Graphs in Csym \ Cauto). (i) A triangle with one more edge at-

tached (the first graph in Figure 1). This is the only connected separating

example of even size we know. In particular, none of the connected graphs of

size 6 is in Csym \ Cauto. Note that the definition of Csym does not exclude graphs

of odd size, as given in the further examples.

(ii) The graphs of size 5 shown in Figure 1.

(iii) Paths P1, P3, and P5.

(iv) Cycles C3, C5, and C7.

(v) Stars K1,n, if n is odd.

Note that in spite of items 4 and 5, P7 and C9 are not in Csym.

2More generally, cubes are a particular case of grids, i.e., Cartesian products of paths. The
central symmetry of a grid moves each edge unless exactly one of the factors is an odd path.
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Figure 1. Graphs of size 4 and 5 that are in Csym but not in Cauto.

Question 3.5. How much larger is Csym than Cauto? Are there other connected

separating examples than those listed above?

4. Closure properties of Cauto

We now recall a few operations on graphs. Given two graphs G1 and G2, we

define a product graph on the vertex set V (G1) × V (G2) in three ways. Two

vertices (u1, u2) and (v1, v2) are adjacent in the Cartesian product G1 × G2 if

either u1 = v1 and {u2, v2} ∈ E(G2) or u2 = v2 and {u1, v1} ∈ E(G1); in

the lexicographic product G1[G2] if either {u1, v1} ∈ E(G1) or u1 = v1 and

{u2, v2} ∈ E(G2); in the categorical product G1 · G2 if {u1, v1} ∈ E(G1) and

{u2, v2} ∈ E(G2).

If the vertex sets of G1 and G2 are disjoint, we define the sum (or disjoint

union) G1 + G2 to be the graph with vertex set V (G1) ∪ V (G2) and edge set

E(G1) ∪ E(G2).

Using these graph operations, from Example 3.2 one can obtain more examples

of graphs in Csym. Note that the class of antipodal graphs itself is closed with

respect to the Cartesian product [9].

Theorem 4.1. (i) Cauto is closed with respect to the sum and with respect to the

Cartesian, the lexicographic, and the categorical products.

(ii) Moreover, Cauto is an ideal with respect to the categorical product, that is, if

G is in Cauto and H is arbitrary, then both G ·H and H ·G are in Cauto.

Proof. For the sum the claim 1 is obvious. Consider three auxiliary product

notions. Given two graphs G1 and G2, we define product graphs G1 ⊗1 G2,

G1 ⊗2 G2, and G1 ⊗3 G2 each on the vertex set V (G1) × V (G2). Two vertices

(u1, u2) and (v1, v2) are adjacent in G1 ⊗1 G2 if {u1, v1} ∈ E(G1) and u2 = v2;

in G1 ⊗2 G2 if {u1, v1} ∈ E(G1) and u2 6= v2; and in G1 ⊗3 G2 if u1 = v1 and

{u2, v2} ∈ E(G2).
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Given two permutations, φ1 of V (G1) and φ2 of V (G2), we define a permuta-

tion ψ of V (G1)×V (G2) by ψ(u1, u2) = (φ1(u1), φ2(u2)). If both φ1 and φ2 are

involutory, so is ψ. If φ1 and φ2 are automorphisms of G1 and G2 respectively,

then ψ is an automorphism of each G1⊗iG2, i = 1, 2, 3. Finally, it is not hard to

see that if both φ1 and φ2 move all edges, so does ψ in each G1 ⊗iG2, i = 1, 2, 3.

Notice now that E(G1 ⊗1 G2), E(G1 ⊗2 G2), and E(G1 ⊗3 G2) are pairwise

disjoint. Notice also that E(G1 × G2) = E(G1 ⊗1 G2) ∪ E(G1 ⊗3 G2) and

E(G1[G2]) = E(G1 ⊗1 G2) ∪ E(G1 ⊗2 G2) ∪ E(G1 ⊗3 G2). It follows that if

φ1 and φ2 are fixed-edge-free involutory automorphisms of G1 and G2 respec-

tively, then ψ is a fixed-edge-free involutory automorphism of both G1 ×G2 and

G1[G2]. Thus, Cauto is closed with respect to the Cartesian and the lexicographic

products.

To prove the claim 2, let G ∈ Cauto, φ be a fixed-edge-free involutory automor-

phism of G, and H be an arbitrary graph. Define a permutation ψ of V (G ·H)

by ψ(u, v) = (φ(u), v). It is not hard to see that ψ is a fixed-edge-free involutory

automorphism of G ·H . Thus, G ·H ∈ Cauto. The same is true for H ·G because

G ·H and H ·G are isomorphic. �

Example 4.2 (Csym is not closed with respect to the Cartesian, the lexico-

graphic, and the categorical products). Denote the first graph in Example 3.4

byK3+e. The following product graphs are not in Csym: (K3+e)×P2, P2[K3+e],

and (K3 + e) · (K3 + e). To show this, for each of these graphs we will describe

a strategy allowing A to destroy an isomorphism between the red and the blue

subgraphs, regardless of B’s strategy.

(K3 + e) × P2 has a unique vertex v of the maximum degree 5, and v is

connected to the two vertices v1 and v2 of degree 4 that are connected to each

other. In the first move of a symmetry-breaking strategy, A chooses the edge

{v, v1}. If B chooses an edge not incident to v, A creates a star K1,5 and thus

breaks B’s symmetric strategy. If B chooses an edge incident to v but not {v, v2},

A chooses {v, v2} and breaks B’s symmetric strategy by creating a triangle K3

in the third move. Assume therefore that in the second round B chooses {v, v2}.

In the next moves A creates a star with center v. If B tries to create a star

with the same center, the symmetry eventually breaks because A can create a

K1,3 while B can create at most a K1,2. Assume therefore that in the first four

rounds A creates a K1,4 with center v and B creates a K1,4 with center v2 (see

Figure 2). In the rounds 5–8 A attaches a new edge to every leaf of the red star.

Player B’s symmetric strategy is broken because he cannot attach any edge to v.

P2[K3 + e] consists of three copies of K3 + e on the vertex sets {u1, u2, u3,

u4}, {v1, v2, v3, v4}, and {w1, w2, w3, w4}, and of 32 edges {vi, uj} and {vi, wj}

for all 1 ≤ i, j ≤ 4 (see Figure 3). The vertex v1 has the maximum degree 11,

v2 and v3 have degree 10, v4 has degree 9, and all other vertices have degree at

most 7. In the first move of a symmetry-breaking strategy A chooses the edge

{v1, v2}. If B in response does not choose {v1, v3}, A does it and breaks B’s
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v

v2

v1

Figure 2. First four rounds of
�

’s symmetry-breaking strategy on (K3 + e)×P2

(
�

’s edges dotted, � ’s edges dashed, uncolored edges continuous).

symmetric strategy by creating a star with center v1. If B chooses {v1, v3}, in

the second move A chooses {v1, u4}. If B then chooses an edge going out of v1,

A breaks B’s symmetric strategy by creating a K1,6. Assume therefore that in

the second move B chooses an edge {v3, x}. If x = v2 or x = u4, A chooses

{u4, v2} and breaks B’s symmetric strategy by creating a triangle K3. Assume

therefore that x is another vertex (for example, x = u1 as in Figure 3). In the

third move A chooses {v2, v3}. If B chooses {x, v2}, A chooses {u4, v3} and

breaks B’s symmetric strategy by creating a quadrilateral C4. Otherwise, in the

next moves A creates a star K1,10 with center v2. Player B’s symmetric strategy

eventually is broken because he can create at most a K1,9 with center v1 or v3
or at most a K1,7 with center x.

v1

v3

v4

u1

u3

u4

u2 v2

w1

w3

w4

w2

Figure 3. First three moves of
�

’s symmetry-breaking strategy on P2[K3 + e]

(
�

’s edges dotted, � ’s edges dashed, uncolored edges continuous, uncolored

edges {vi, uj}, {vi, wj} not shown).
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(K3 + e) · (K3 + e) has a unique vertex v of the maximum degree 9, whereas

all other vertices have degree at most 6. A symmetry-breaking strategy of A
consists in creating a star with center v.

Remark 4.3. Csym is not closed with respect to the sum because, for example,

it does not contain K3 + P3. Nevertheless, if G1 and G2 are in Csym and both

have even size, G1 +G2 is easily seen to be in Csym.

5. Complexity of Cauto

Though the graph classes listed in Example 3.2 have efficient membership

tests, in general the existence of an involutory automorphism without fixed edges

is not easy to determine.

Theorem 5.1. Deciding membership of a given graph G in the class Cauto is

NP-complete.

Proof. Consider the related problem Order 2 Fixed-Point-Free Automor-

phism whose NP-completeness was proven in [11]. This is the problem of recog-

nition if a given graph has an involutory automorphism without fixed vertices.

We describe a polynomial time reduction R from Order 2 Fixed-Point-Free

Automorphism to Cauto.

Given a graph G, we perform two operations:

Step 1. Split every edge into two adjacent edges by inserting a new vertex, i.e.,

form the subdivision graph S(G) (see [6, p. 80]).

Step 2. Attach a 3-star by a leaf at every non-isolated vertex of S(G) which

also was in G.

As a result we obtain R(G) (see an example in Figure 4). We have to prove that

G has an involutory automorphism without fixed vertices if and only if R(G) has

an involutory automorphism without fixed edges.

R(G)G

Figure 4. An example of the reduction.
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Every involutory automorphism of G without fixed vertices determines an

involutory automorphism of R(G) that, thanks to the new vertices, has no fixed

edge. On the other hand, consider an arbitrary automorphism ψ of R(G). Since

ψ maps the set of vertices of degree 1 in R(G) onto itself, ψ maps every 3-star

added in Step 2 into another such 3-star (or itself) and therefore it maps V (G)

onto itself. Suppose that u and v are two vertices adjacent in G and let z be

the vertex inserted between u and v in Step 1. Then ψ(z) is adjacent in R(G)

with both ψ(u) and ψ(v). As easily seen, ψ(z) can appear in R(G) only in Step

1 and therefore ψ(u) and ψ(v) are adjacent in G. This proves that ψ induces an

automorphism of G. The latter is involutory if so is ψ. Finally, if ψ has no fixed

edge, then every 3-star added in Step 2 is mapped to a different such 3-star and

consequently the induced automorphism of G has no fixed vertex. �

Theorem 5.1 implies that, despite the combinatorial simplicity of an auto-

morphism-based strategy, realizing this strategy by B on G ∈ Cauto requires

him to be at least NP powerful. The reason is that an automorphism-based

strategy subsumes finding an involutory fixed-edge-free automorphism of any

given G ∈ Cauto, whereas this problem is at least as hard as testing membership

in Cauto.

Given the order or the size, there are natural ways of efficiently generating a

graph in Cauto with respect to a certain probability distribution. Theorem 5.1

together with such a generating procedure has two imaginable applications in

“real-life” situations.

Negative scenario. Player B secretly generates G ∈ Cauto and makes an offer

to A to choose F at his discretion and play the game AVOID(G,F ). If A accepts,

then B, who knows a suitable automorphism of G, follows the automorphism-

based strategy and at least does not lose. A is not able to observe that G ∈ Cauto,

unless he can efficiently solve NP.3

Positive scenario. Player A insists that before the game an impartial third

person, hidden from B, permutes at random the vertices of G. Then applying

the automorphism-based strategy in the worst case becomes for Player B as hard

as testing isomorphism of graphs. More precisely, Player B faces the following

search problem.

PAR (Permuted Automorphism Reconstruction)

Input: G, H , and β, where G and H are isomorphic graphs in Cauto, and β is a

fixed-edge-free involutory automorphism of H .

Find: α, a fixed-edge-free involutory automorphism of G.

We relate this problem to GI, the Graph Isomorphism problem, that is, given

two graphs G0 and G1, to recognize if they are isomorphic. We use the notion

of the Turing reducibility extended in a natural way over search problems. We

3We assume here that � fails to decide if G ∈ Cauto at least for some G. We could claim
this failure for most G if Cauto would be proven to be complete for the average case [10].
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say that two problems are polynomial-time equivalent if they are reducible one

to another by polynomial-time Turing reductions.

Theorem 5.2. The problems PAR and GI are polynomial-time equivalent.

Proof. We use the well-known fact that the decision problem GI is polynomial-

time equivalent with the search problem of finding an isomorphism between two

given graphs [8, Section 1.2].

A reduction from PAR to GI. We describe a simple algorithm solving PAR

under the assumption that we are able to construct a graph isomorphism. Given

an input (G,H, β) of PAR, let π be an isomorphism from G to H . As easily

seen, computing the composition α = π−1βπ gives us a solution of PAR.

A reduction from GI to PAR. We will describe a reduction to PAR from the

problem of constructing an isomorphism between two graphs G0 and G1 of the

same size. We assume that both G0 and G1 are connected and their size is odd.

To ensure the odd size, one can just add an isolated edge to both of the graphs.

To ensure the connectedness, one can replace the graphs with their complements.

To not lose the odd size, the latter operation should be applied only for graphs

of order n such that n(n−1)/2 is even; hence adding one or two isolated vertices

may be required beforehand. If we find an isomorphism between the modified

graphs, an isomorphism between the original graphs is easily reconstructed.

We form the triple (G,H, β) by setting G = G0 + G1, H = G0 + G0, and

taking β to be the identity map between the two copies of G0. If G0 and G1

are isomorphic, this is a legitimate instance of PAR. By the connectedness of

G0 and G1, if α : V (G) → V (G) is a solution of PAR on this instance, it

either acts within the connected components V (G0) and V (G1) independently

or maps V (G0) to V (G1) and vice versa. The first possibility actually cannot

happen because the size of G0 and G1 is odd and hence α cannot be at the same

time involutory and fixed-edge-free. Thus α is an isomorphism between G0 and

G1. �

Question 5.3. Is deciding membership in Csym NP-hard? A priori we can

say only that Csym is in PSPACE. Of course, if the difference Csym \ Cauto is

decidable in polynomial time, then NP-completeness of Csym would follow from

Theorem 5.1.

6. Game AVOID(Kn, P2)

Games on complete graphs are particularly interesting. Notice first of all that

in this case a symmetric strategy is not available.

Theorem 6.1. Kn /∈ Csym for n ≥ 4.

Proof. We describe a strategy ofA that violates the isomorphism between the red

and the blue subgraphs at latest in the (n− 1)-th round. In the first two rounds

A chooses two adjacent edges ensuring that at least one of them is adjacent also
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to the first edge chosen by B. Thus, after the second round the game can be in

one of five positions depicted in Figure 5.

1 2 3 4 5

Figure 5. First two rounds of
�

’s symmetry-breaking strategy (
�

’s edges dotted,

� ’s edges continuous).

In positions 1 and 2 A creates a triangle, which is impossible for B. In

positions 3, 4, and 5 A creates an (n− 1)-star, while B is able to create at most

an (n−2)-star (in position 5 A first of all chooses the uncolored edge connecting

two vertices of degree 2). �

Let us define CII to be the class of all graphs G such that, for all F , B has a

nonlosing strategy in the game AVOID(G,F ). Clearly, CII contains Csym. It is

easy to check that K4 is in CII, and therefore Csym is a proper subclass of CII.

It is an interesting question if Kn ∈ CII for all n. We examine the case of a

forbidden subgraph F = P2, a path of length 2. For all n > 2, we describe an

efficient winning strategy for B in AVOID(Kn, P2). Somewhat surprisingly, this

strategy, in contrast to Theorem 6.1, proves to be symmetric in a weaker sense.

More precisely, we say that a strategy of B is symmetric in AVOID(G,F ) if,

independently of A’s strategy, the red and the blue subgraphs are isomorphic

after every move of B in the game. Let us stress the difference with the notion

of a symmetric strategy on G we used so far. While a strategy symmetric on G

guarantees the isomorphism until G is completely colored (except one edge if G

has odd size), a strategy symmetric in AVOID(G,F ) guarantees the isomorphism

only as long as A does not lose in AVOID(G,F ).

Theorem 6.2. Player B has a symmetric strategy in the game AVOID(Kn, P2).

Proof. Let Ai (resp. Bi) denote the set of the edges chosen by A (resp. B) in the

first i rounds. The strategy of B is, as long as Ai is a matching, to choose an

edge so that the subgraph of Kn with edge set Ai ∪Bi is a path. The only case

when this is impossible is that n is even and i = n/2. Then B chooses the edge

that makes Ai ∪ Bi a Hamiltonian cycle (see Figure 6). �

Figure 6. A game (K6, P2) (
�

’s edges dotted, � ’s edges continuous).
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Question 6.3. What is the complexity of deciding, given G, whether or not B
has a winning strategy in AVOID(G,P2)?

It is worth noting that in [16], PSPACE-completeness of the winner recogni-

tion in the avoidance game with precoloring is proven even for a fixed forbidden

graph F , namely for two triangles with a common vertex called the “bowtie

graph”. Notice also that AVOID(G,P2) has an equivalent vertex-coloring ver-

sion: the players color the vertices of the line graph L(G) and the loser is the

one who creates two adjacent vertices of the same color.

Question 6.4. Does Kn belong to CII? In particular, does B have winning

strategies in AVOID(Kn,K1,3), AVOID(Kn, P3), and AVOID(Kn,K3) for large

enough n?
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