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Abstract. We study the analogue of tic-tac-toe played on a k-dimensional
hypercube of side n. The game is either a first-player win or a draw. We
are primarily concerned with the relationships between n and k (regions in
n-k space) that correspond to wins or draws of certain types. For example,
for each given value of k, we believe there is a critical value nd of n below
which the first player can force a win, while at or above this critical value,
the second player can obtain a draw. The larger the value of n for a given
k, the easier it becomes for the second player to draw. We also consider
other “critical values” of n for each given k separating distinct behaviors.
Finally, we discuss and prove results about the misère form of the game.

1. Introduction

Hypercube tic-tac-toe is a two-person game played on an nk “board” (i.e. a

k-dimensional hypercube of side n). (The familiar 3 × 3 game has k = 2 and

n = 3. Several editions of the 43 game, k = 3 and n = 4, are commercially

available.) In all these games the two players take turns. Each player claims

a single one of the nk cells with his/her symbol (traditionally O’s and X’s, or

“noughts and crosses”, as the game is known in the UK), and the first player

to complete a “path” of length n (in any straight line, including any type of

diagonal) is the winner. If all nk cells are filled (with the two kinds of symbols)

but no solid-symbol path has been completed, the game is declared a draw.

Since the first move cannot be a disadvantage, with best play the first player

should never lose. Hence, in the ideal world, the first player seeks a win, while

the second player tries to draw. For each given value of k, we believe there is

a critical value nd of n below which the first player can force a win, while at or

above this critical value, the second player can obtain a draw. This exact value

of n is exceedingly difficult to determine as a function of k. (The larger the value

of n for a given k, the easier it becomes for the second player to draw.)

There are several other “critical values” of n for each given k. The smallest

of these is the value of n below which the first player must win, no matter how

well or poorly the two players play. Thus, for all k > 1, the 2k board is a win
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for the first player on his/her second move, independent of the actual sequence

of moves. Another critical value, np ≥ nd, is the value at or above which the

second player can force a draw by a “pairing strategy”.

There are exactly ((n + 2)k − nk)/2 possible winning paths on the nk board.

If it is possible to “dedicate” two cells of the hypercube exclusively to each path,

the second player can draw by occupying the second dedicated cell whenever

the first player occupies the first dedicated cell on a single path. A necessary

condition for a pairing strategy to exist is that the number of cells must be at

least twice the number of paths, i.e.,

nk ≥ (n + 2)k − nk,

which is easily seen to be equivalent to

n ≥
2

21/k − 1
.

The Hales–Jewett Conjecture is that for every k, when n ≥ 2

21/k−1
, i.e. for all

n ≥
⌈

2

21/k−1

⌉

, the second player can force a draw. A stronger conjecture would

be that for each k, for all n ≥ nk =
⌈

2

21/k
−1

⌉

, a draw for the second player by

“pairing strategy” can be found.

It is very tempting to conjecture that

nk =

⌈

2

21/k − 1

⌉

=

⌊

2k

ln 2

⌋

for all integers k ≥ 1. Somewhat surprisingly, this conjecture is false. Even more

surprisingly, the first failure of this conjecture occurs at k = 6, 847, 196, 937 di-

mensions, where a “board” of side
⌊

2k
ln 2

⌋

= 19,756,834,129 is too small (by just a

little) to allow a pairing strategy. The next failure occurs at k = 27, 637, 329, 632

dimensions, where a “board” of side n =
⌊

2k
ln 2

⌋

= 79,744,476,806 is too small (by

just a little) to allow a pairing strategy.

Are there infinitely many (albeit incredibly sparse) exceptional values of k?

Can an explicit pairing strategy be exhibited for specific pairs or classes of pairs,

of k and nk? Are there values of k such that no pairing strategy exists when

n = nk? These questions and others will be explored.

In the (n, k)-plane, “phase changes” occur from “forced win for first player”,

to “win by strategy for first player”, to “draw by strategy” for second player,

to “draw by pairing strategy” for second player. It should be easier to describe

these regions in (n, k) “phase space” than to calculate the locations of their

precise boundaries.

What we have just discussed is the normal form of the game. In the misère

form, the first player to form a straight path of length n is the loser. We will

consider the misère form later on, but unless otherwise specified we will always

be talking about the normal form.
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2. An Elementary Result

Theorem 1. The number of winning paths on the nk hypercube is

1

2

(

(n + 2)k − nk
)

.

Proof A (Geometric/Intuitive): Embed the nk hypercube in an (n+2)k hyper-

cube which extends one unit farther in each direction in each of the k dimensions

than the original hypercube (see Figure 1). Then each winning path in the nk

hypercube terminates in exactly two “border cells” of the enlarged hypercube,

and these two border cells are unique to that path. Moreover, every border cell

is at the end of a path, so that the (n + 2)k − nk border cells are in two-to-one

correspondence with the winning paths. �

Figure 1. The familiar n = 3, k = 2 tic-tac-toe board is embedded in an

n = 5, k = 2 board. Each of the 8 winning paths terminates in exactly 2 border

cells of the 5 × 5 board: 1

2
(52

− 32) = 8.

Proof B (Algebraic/Rigorous): Represent each cell of the nk hypercube by its

coordinate k-vector α = (a1, a2, . . . , ak), where 1 ≤ ai ≤ n for each i, 1 ≤ i ≤ k.

A winning path P is an ordered sequence of n such vectors, P = {α1, α2, . . . , αn},

in which the ith component, for each i, either runs from 1 up to n, or from n

down to 1, or remains constant at any one of the n values, except that we do not

allow all k components to remain constant (since all n vectors in P would then

degenerate to the same cell, and we would not have a path). Thus the number

of allowed sequences which represent paths is (n + 2)k − nk. However, the path

P = {α1, α2, . . . , αn} is the same as the path P ′ = {αn, αn−1, . . . , α1}, so there

are only 1

2
((n + 2)k − nk) unoriented paths. �

3. Regions in “n − k Space”

We first observe that having the first move cannot be a disadvantage; so the

first player looks for a winning strategy, while the second player looks for a

drawing strategy. (This assumes intelligent players of comparable skill.)
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If k ≥ 2 and n = 2, the first player must complete a winning path on her

second move, independently of how well or poorly she plays. More generally,

when n is “small” compared to k, it is impossible to assign all nk cells to two

players without at least one winning path having been created for one of the

two players. For k = 1, we see that n = 1 is “small enough” but n = 2 is not.

For k = 2, we have n = 2 is “small enough” (as mentioned more generally) but

n = 3 is not (i.e. ordinary tic-tac-toe can result in a draw, and in fact always

will with best play by both players).

It is also known that for k = 3, no draw is possible on the 33 “board”, but that

draws are possible on the 43 “board” (which has been available commercially

from several manufacturers). The “obvious” conjecture that the critical value

for all k is n = k (since it is true for k = 1, 2, 3) was first disproved some forty

years ago (by A. W. Hales), as follows:

Form the 44 hypercube as the tensor product of the following two 42 “boards”,

where we represent the cells of the two players by + (for +1) and − (for −1).

+ + -

+

++

++

+

-

- -

-

-

-

-

+ - + +

+ + + -

+ + - +

- + + +

Note that the left factor has 2 plusses and 2 minuses on each tic-tac-toe path

(an even number, but not 0 or 4, of each; while the right factor has 3 plusses

and 1 minus on each tic-tac-toe path. Each “winning path” on the resulting 44

hypercube is either a constant from one factor times a path from the other factor

(and therefore not “four identical symbols”), or the term-by-term products of a

path from the first factor and a path from the second factor; but clearly such a

term-by-term product path will have an odd number of minuses, and therefore

cannot have all four cells the same.

Since the left factor has equally many +’s and −’s, this will also be true of

the tensor product. Thus, the 44 draw could occur in an actual game, especially

if the two players cooperated to achieve it. �

In general, this suggests that the critical n for each k (for “no draw is possible

on the nk board) satisfies n ≤ k, and this n is monotonically non-decreasing as

k increases. (The monotonic property is easily proved. The precise expression

of this critical n as a function of k is not known.)

The principal regions in n − k space are the following:

1. The first player must win (as when n = 2 for k ≥ 2).
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2. Since no draw is possible, the first player should have a relatively easy win

(as when n = k = 3, where playing in the center on the first move is already

devastating).

3. Although draws are possible, there is a win for the first player with best play.

(It is known [1] that exhaustive computer searching has shown that the 43

“board” is in this category.)

4. Although there is no trivial drawing strategy for the second player (as in

region 5, below), the second player can always draw with best play. (This is

the case for the familiar 32 board. While mathematicians will consider the

drawing strategy “trivial” because it is so easily learned, it does not meet our

definition of “trivial” given in Region 5; nor does it meet the layman’s notion

of “trivial” since this game is still widely played.)

5. The second player has a “trivial” draw by a pairing strategy. In a pairing

strategy, two of the nk cells are explicitly dedicated to each of the 1

2
((n +

2)k − nk) winning paths. (There may be some undedicated cells left over.)

Whenever the first player claims one dedicated cell, the second player then

immediately claims the other cell dedicated to the same path, if he hasn’t

already claimed it. (If he already has, he is free to claim any unclaimed cell.)

Clearly, the first player can never complete a winning path if the second player

is able to follow this strategy.

When k = 1, the line of length n = 2 forces the second player to draw by

an automatic pairing of the only two “cells” of the “board”.

When k = 2, the smallest board with a pairing strategy has n = 5, as shown

in Figure 2.

The second player can even give the first player a “handicap” of the center

square, as well as the first move, and still draw by the pairing shown in

Figure 2.

v i a a f

j b h u b

c i g c

d

j

u h d f

e e g v

Figure 2. A pairing strategy for the 5 × 5 board. Two each of a through e are

dedicated to the rows, two each of f through j are dedicated to the columns,

and two each of u and v to the diagonals. The center cell is left undesignated.
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A more suggestive way to indicate the same pairing strategy is shown in

Figure 3.

Figure 3. The pairing strategy for the 5 × 5 board, shown with horizontal,

vertical, and diagonal strokes to indicate the type of “winning paths” to which

the cells are dedicated. Note the symmetry of this pattern relative to each of the

two diagonals, as well as under 180◦ rotation.

On the 6 × 6 board, there are 62 = 36 cells and 1

2
(82 − 62) = 14 paths. If we

dedicate all six cells on each diagonal to that diagonal, we have 36 − 12 = 24

remaining cells, to assign to 14 − 2 = 12 remaining paths. This can be done as

shown in Figure 4, which has the full D4 symmetry of the square board.

Figure 4. Representation of a pairing strategy on the 6×6 board. The horizontal

and vertical midlines can be regarded as “reflectors” for this pattern. (So too

can the diagonals.)

For k = 3, the smallest “board” with a pairing strategy is the 83, which has

512 cells and 1

2
(103 −83) = 244 paths. However, the four “body diagonals” have

8 cells each, and if we dedicate all of these to their respective (non-overlapping)

body diagonals, we are left with 512 − 32 = 480 cells, and 244 − 4 = 240 paths,

i.e., exactly two cells available per path. If we divide the 83 “board” into octants,

each 43, by the three mid-planes, we can assign “strokes” to the sixty available
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cells in the first octant (the other 4 cells were on a body diagonal), and then use

the three mid-planes as mirrors to assign “strokes” (as in Figures 5 and 6) to all

the remaining cells in the other octants, to end up with two dedicated cells per

winning path (having treated the body-diagonal paths separately.)

To show the formation of the assignment, for pairing strategy purpose, to the

4 × 4 × 4 “first octant” of the 8 × 8 × 8 board, we first show, in Figure 5, the

dedication of cells to ranks, files, and (vertical) columns.

x = o x

o

||

x

= || ||

|| = o

o = x

= o || ||

=

o

||

x x o

x x =

|| o =

o || = o

||

=

o

x x =

x x ||

= || o

x = || x

=

||

x

o o ||

o o =

|| = x

× unassigned

= rank cell

|| file cell

◦ (vertical) column cell

Figure 5. Partial assignment of cells to paths, in the “first octant” of the 8×8×8

game.

We complete the assignment with three orientations of diagonals (including

body diagonals, to which all their cells are dedicated) in Figure 6.

=

=

=

=

|| ||

|| ||

o

o

o

o

=

=

=

=

oo

oo

||

||

||

||=

=

=

=
o

o

o

o

|| ||

|||| oo

oo

||

||

||
||

=

=

=

=

Figure 6. Assignment of cells to “winning paths”, in the “first octant” of the

8 × 8 × 8 game. The arrows indicate the type of diagonals to which these cells

are dedicated. These four 4× 4 patterns are to be stacked with the left-most on

top. Then the upper left corner of that top layer is at a corner of the 8 × 8 × 8

board, and that cell is dedicated to the corresponding body diagonal.

Several of these examples of pairing strategies were shown in [4].

In general, a necessary condition for a pairing strategy to exist is that the

number of cells must at least be equal to twice the number of winning paths,

that is,

nk ≥ (n + 2)k − nk, or, equivalently, n ≥
2

21/k − 1
.

Accordingly, let us define nk =
⌈

2

21/k
−1

⌉

.

Thus, n1 = 2, n2 = 5, n3 = 8, and we have seen that pairing strategies really

do exist for these values of nk. At the present time (July, 2000), successful pairing
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strategies have also been reported for the next two cases: n4 = 11 and n5 = 14.

Whether a pairing strategy exists for every (nk)k hypercube is not known, but it

has been shown [3] that a somewhat more elaborate drawing strategy exists for

the second player for these cases, at least for all large k (specifically, for k ≥ 100),

proving a conjecture in [2] for these values.

In the next section, we will examine the validity of replacing nk =
⌈

2

21/k
−1

⌉

,

the round-up of an exponential expression in k, by the much simpler nk =
⌊

2k
ln 2

⌋

,

the round-down of a linear expression in k.

4. The Linearized Approximation to nk

We have nk =
⌈

2

21/k
−1

⌉

, where, letting a = 21/k, we have

1

21/k − 1
=

ak − 1

a − 1
= 1 + a + a2 + · · · + ak−1 ≈

∫ k

0

atdt =

∫ k

0

et ln adt

=
1

ln a
· at

∣

∣

∣

∣

k

t=0

=
ak − 1

ln a
=

k

ln 2
(2 − 1) =

k

ln 2
,

and since taking the upper limit of integration to be k (rather than, say, k − 1),

this suggests that 1

21/k
−1

has been rounded upward to k
ln 2

, giving some heuristic

motivation to believing the “identity” nk =
⌈

2

21/k−1

⌉

?
=

⌊

2k
ln 2

⌋

.

Alternatively,

2 >
(n + 2)k

nk
=

(

1 +
2

n

)k

≈ e2k/n,

from which nk ≈ 2k
ln 2

.

This belief is easily strengthened by routine computer verification for the first

10j values of k, for each j = 1, 2, 3, 4, 5, 6, 7, 8, 9. (Multiple precision is certainly

required long before reaching k = 109.) Surely this constitutes “proof beyond a

reasonable doubt”, and would almost certainly convince not only a jury, but an

engineer, a statistician, even a physicist, but (we hope) not a true mathematician.

Because this purported “identity” is not always true!

The first failure occurs at k = 6,847,196,937. That is, if one is playing

hypercube tic-tac-toe in k = 6,847,196,937 dimensions on a board which is

n =
⌊

2k
ln 2

⌋

= 19,756,834,129 on a side, the number of cells is slightly less than

twice the number of winning paths, so no true pairing strategy can possibly exist!

(If the two players each make 109 moves per second, how many eons will it take

to claim all nk cells?)

And, horribile dictu, this first failure is not the last! It is, to be sure, rather

isolated, but the second failure occurs at k = 27,637,329,632, where the value

n =
⌊

2k
ln 2

⌋

= 79,744,476,806 again fails to allow twice as many cells as paths

on the nk “board”. More careful power series analysis shows that the difference
2k
ln 2

− 2

21/k
−1

equals 1 − ε, where 0 < ε < ln 2

6k . Using results from the theory of
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diophantine approximation, “failure” can only occur when k is the denominator

of a continued fraction convergent for 2

ln 2
, which greatly facilitates computation.

Worst of all, we believe (though it is not yet proved) that the set of k’s for

which
⌊

2k

ln 2

⌋

6=

⌈

2

21/k − 1

⌉

is an infinite subsequence of the positive integers! This is related to the “Markov

constant” M
(

2

ln 2

)

. (Fortunately the chance of landing on one of these deadly

values of k “at random” is not very great.)

A conjecture about all positive integers k that fails for the first time at k =

6,847,196,937 is impressive, but not record-setting. However, the number of cells

in the nk hypercube for this value of k and n =
⌊

2k
ln 2

⌋

may be one of the larger

integers that has occurred “naturally”.

5. Hypercube Tic-Tac-Toe and Combinatorial Phase Space

The five regions described in Section 2 above in n−k space partition the lattice

points in one quadrant of the Euclidean plane into five “connected” regions. (If

we use cells of quadrille paper rather than points for each pair (k, n), these regions

are more likely to be connected and simply connected.) The hard problem is to

find the precise boundaries of these regions— i.e. to locate exactly where the

“phase transitions” occur, between the different “states” in game space. What is

undoubtedly easier, and probably more “useful”, is to obtain qualitative results

on the shapes of these regions and their boundaries, and to get fairly good

inequalities of the sort: “if c1k < n < c2k, then (k, n) is in region j”, for each j

from 1 to 5.

The connectedness of Region 5 in n-k phase space is actually provable. The

first part is that a pairing pattern on nk+1 obviously imposes a pairing pattern

on nk. It is also true that a pairing pattern on nk extends to a pairing pattern

on (n + 1)k, but here one must be careful. Instead of extending at the edges, it

is easier to extend from the middle.

Assume that the successful pairing designations have already been made on

the nk “board”. We now insert k mid-hyperplanes into the nk configuration.

If n is odd, all split cells are “replicated” (i.e. their designations as rank cells,

body diagonal cells, etc. are inherited by each offspring cell). If n is even, use

the mid-hyperplanes as one-way mirrors to generate a duplication of one of the

adjacent layers. The crucial point is that by adjoining the new layers “centrally”,

all diagonals remain diagonals.

By centrally enlarging the “board”, all new paths are blocked if all old paths

were blocked; all new paths have at least two dedicated cells if all old paths had

at least two dedicated cells.

In Figure 7, we see this “central enlargement” illustrated to go from 3× 3 to

4 × 4, and from 4 × 4 to 5 × 5.
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DIMENSION

n
k

S
I
D
E

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1

5 4 2 2 2 2 2 2

5 4 3 3 2 2 22

5 5 4 3 3 3 2 2

5 5 4 3 3 3 3 3

4 3 3 3 3 35 5

5 5 5 4 3 3 3 3

5 5 5 4 3 3 3 3

5 5 5 4 4 3 3 3

5 5 5 5 4 3 3 3

5 5 5 5 4 4 3 3

REGIONS IN  n - k  PHASE SPACE
(Dotted boundaries and circled numbers are uncertain)

TABLE 1.

Table 1. Regions in n−k phase space. (Dotted boundaries and circled numbers

are uncertain.)

1 2 3

4 5 6

7 8 9

→

1 2 2 3

4 5 5 6

4 5 5 6

7 8 8 9

A B C D

E F G H

I J K L

M N O P

→

A B B C D

E F F G H

E F F G H

I J J K L

M N N O P

Figure 7. Central enlargements of even and odd boards.
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Figure 8. Extending a “pairing strategy” from 52 to 62.

In Figure 8, an actual pairing strategy is extended from the 5 × 5 board to

the 6 × 6 board by this method.

Note that we have shown more than just connectedness. We have shown

that Region 5 is “row-column convex”— i.e. that any horizontal or vertical line

joining two points of the region lies entirely in the region. This implies that the

region is simply connected.

A similar argument shows that Region 2 is also “row-column convex”.

6. Misère Hypercube Tic-Tac-Toe

There is one sweepingly general result.

Theorem 2. The first player can achieve at least a draw on the nk board when-

ever n > 1 is odd (in the misère case).

Proof. When n is odd, the nk “board” has a central cell. The first player should

start by claiming this central cell, and thereafter playing diametrically opposite

every subsequent move of her opponent. It is clear that the first player will

never be completing a path that includes the central cell; and any other path

completed by the first player will be a mirror image of a path already completed

by the second player. �

Corollary. For (n, k) in “Region 2”, i.e. where the nk hypercube is too small

to fail to have a path when all filled in, if n > 1 is odd, the first player wins the

misère game using the strategy in the proof of Theorem 2.

Example. On the 3 × 3 × 3 “board”, one would naively expect that the worst

move for the first player (under misère rules) would be to claim the central cube,

since this is on the most paths (thirteen paths, versus seven paths for a corner

cell, five paths for a mid-face cell, and only four paths for an edge cell). Yet, by

the Corollary, this is a winning move for the first player. (A computer program
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e f g

l m h

k j i

a b c

d ©x d

c b a

i j k

h m l

g f e

Figure 9. First player winning strategy for 3 × 3 × 3 Misère Tic-Tac-Toe.

could determine whether or not it is the only winning first move; but in any case,

it is the first move with the simplest winning strategy.)

7. Tic-Tac-Toe on Projective Planes

The n2 board resembles the structure of a finite affine geometry. It can be

extended to the finite projective plane of order n, with a total of n2+n+1 points

on n2 + n + 1 lines, each line containing n + 1 points. Tic-Tac-Toe generalizes

to these projective “boards” in the obvious way: the two players take turns

claiming points, and the first player to complete a line is the winner. This game

is an easy win (for the first player) on the 7-point plane, and a fairly easy draw

(for the second player) on the 13-point plane. (On the 7-point plane, no draw is

possible.) Note that in projective Tic-Tac-Toe, if one player completes a path,

the other cannot possibly, even if given all the remaining “points”.

8. On the Boundary Between Regions 3 and 4

We call the nk-game a win if the first player wins, given best play by both

sides; otherwise, we call it a draw.

We offer the following three hypotheses, all assuming n1 ≥ 2 and k1 ≥ 2.

Hypothesis 1. If the nk1

1 game is a draw, then the nk1−1
1 game is a draw. (“row

convexity”)

Hypothesis 2. If the nk1

1 game is a draw, then the (n1 + 1)k1 game is a draw

(“column convexity”).

Hypothesis 3. If the nk1

1 game is a draw, then the nk game is a draw for all

k ≤ k1 and all n ≥ n1.

Clearly, Hypothesis 3 is true if and only if Hypotheses 1 and 2 are both true.

In this case, the union of regions 1, 2 and 3, and the union of regions 4 and 5,

are both connected and simply connected.

The next result is not quite so obvious.

Theorem 3. If, for specific k1 and even n1, Hypothesis 1 is true, then Hypothesis

2 is true.
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Proof. Interpreting geometrically the binomial expansion

(n1 + 1)k1 = nk1

1 + k1n
k1−1
1 +

(

k1

2

)

nk1−2
1 + · · · + k1n1 + 1,

we see that the (n1 + 1)k1 hypercube can be decomposed, relative to its k1 mid-

hyperplanes (which are unique because n1 + 1 is odd) into 2k1 − 1 hypercubes

of side n1 and dimension j, 1 ≤ j ≤ k1, plus the unique central cell. For

example, the single nk1

1 hypercube results from squeezing back together the 2k1

pieces which are left after all the mid-hyperplanes have been removed; the k1

hypercubes of size nk1−1
1 result from squeezing back together the cells that are,

respectively, in each of the k1 hyperplanes but not in two or more; etc. Such a

decomposition of the 53 hypercube (n1 = 4, k1 = 3) is shown in Figure 10. (This

figure is used only to indicate how the decomposition works, and not to suggest

that the 43-game is a draw, which in fact it is not.)

A A A AC

A A C A A

B B B BE

A A A AC

A A A AC

A A A AC

A A C A A

B B B BE

A A A AC

A A A AC

A A A AC

A A C A A

B B B BE

A A A AC

A A A AC

A A A AC

A A C A A

B B B BE

A A A AC

A A A AC

D D D DG

D D G D

F F F FX

D D DG

D D D DG

D

D

Figure 10. The 53 (hyper)cube decomposed into: one 43 (hyper)cube (the

A-cells); three 42 hypercubes (i.e., squares), indicated by the letters B,C, and D,

respectively; three 41 hypercubes (i.e., lines), indicated by the letters E, F, and

G, respectively; and the central cell, X.

Using Hypothesis 1, the second player draws by always replying to the first

player in the same sub-hypercube where the first player has just moved, and using

the drawing strategy for that sub-hypercube. (If the first player ever occupies

the central cell, the second player then gets a “free move”, which may lead to

additional free moves later on, as in the proof that Region 5 is “row-column

convex”.) Because n1 +1 is odd, every path in the (n1 +1)k1 hypercube requires

a winning path in one of the 2k − 1 sub-hypercubes, and by the strategy just

described, no such path will ever be completed by the first player. �

Notes. 1. It appears that Hypothesis 1 may be easier to prove than the n1-is-

odd case of Hypothesis 2.

2. Analogous to the theorem just proved, it is possible to show that “nk1

1 is a

draw” implies “(n1 + 2)k1 is a draw” whether n1 is even or odd. (This greatly

reduces the uncertainty in the shape of the boundary between Region 3 and

Region 4.)

3. We can prove the assertion in Note 2 as follows: 1) We embed the nk1

1 hy-

percube in an (n1 + 2)k1 hypercube, as in the geometric approach to counting

winning paths. We then deal with the 2k1 added hypersurfaces in much the same
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way as with the k1 mid-hyperplanes in the previous theorem. (This time, the sub-

hypercubes of dimensions j = 1, 2, . . . , k1, are still geometrically connected, and

don’t need to be squeezed back together.) There are now 2k1 zero-dimensional

vertices, so if the first player ever claims one of them, the second player can claim

the diametrically opposite one (just to give a rule for dealing with free moves).

4. In Table 1, Region 5 is “row-column convex” and progagates mostly verti-

cally. In a strongly analogous sense, Region 2 is also “row-column convex” and

progagates mostly horizontally.

9. Additional Notes

(i) On the 33 board, the central cell is so powerful that if the first player is

forbidden to occupy it on his initial move, the second player wins by occupying

it in reply (in the normal game). The entire game tree is easily searched “by

hand”.

(ii) A further generalization of the nk game with n in a row is to the nk game

with r in a row. That is, the first player to claim r consecutive cells along any

straight path is the winner (or, in the misère version, the loser). Games that

are dull draws for given n and k may become interesting when it is merely

required to get r-in-a-row (for some r < n). This generalization provides a

common framework for Tic-Tac-Toe and Go Moku.
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Supplemental Annotated Bibliography

1. Reference [2] first appeared, with the same title and authors, as Jet Propulsion

Laboratory Report no. 32–134, January 31, 1962.



HYPERCUBE TIC-TAC-TOE 181

2. Several results presented at the January, 1972, MAA meeting in Las Vegas,

Nevada (including the pairing pattern on the 83, and how to enlarge a pairing

from nk to (n + 1)k) were contained in a letter dated April 6, 1970, from S.

W. Golomb to J. L. Selfridge. Some of this material was included in [4].

3. Three of Martin Gardner’s Mathematical Games columns in Scientific Amer-

ican dealing with aspects of generalized Tic-Tac-Toe were:

a. March, 1957, included in The Scientific American Book of Mathematical

Puzzles and Diversions (Simon and Schuster, 1959) is rather elementary,

but does describe winning paths on the 44 game (without the proof that

draws are possible).

b. August, 1971, included in Wheels, Life, and Other Mathematical Amuse-

ments (Freeman, 1983), Chapter 9, describes pairing strategies on n2 boards

for all n ≥ 5.

c. April, 1979, included in Fractals, Hypercards, and More (Freeman, 1992)

deals with the generalization of Tic-Tac-Toe to polyominoes.

4. Reference [5], József Beck’s chapter “Games, Randomness and Algorithms”,

in The Mathematics of Paul Erdös, I, edited by R. L. Graham and J. Nes̆etr̆il,

Springer-Verlag, 1997, has what is probably the most up-to-date published

results on nk-hypercube Tic-Tac-Toe. One example is that the second player

can draw (not necessarily by a pairing strategy) provided that n > (log2 3+ε)k

and n > n0(ε), which is asymptotically better than the n > 2k
ln 2

conjecture

first proposed in Reference [2]. (The underlying method for this improved

result is attributed to Erdös and Selfridge.)

In recent, as yet unpublished work, Beck has shown that the second player

can force a draw if k = O(n2/logn), improving his previous result of k =

O(n3/2). This is close to best possible, in a sense, since it is known that if

k = Ω(n2) then the first player has a “weak win”, i.e. can occupy n-in-a-line,

though not necessarily first.

See, also, P. Erdös and J. L. Selfridge, “On a combinatorial game”, Journal

of Combinatorial Theory, Series A, vol. 14, no. 3, May 1973, 298–301.

5. Another reference is: J. L. Paul, Tic-Tac-Toe in n-dimensions, Mathematics

Magazine, vol. 51, no. 1, Jan. 1978, 45–49.

6. A more elementary reference is: Mercer, G. B., and Kolb, J. R., “Three-

dimensional ticktacktoe”, Mathematics Teacher, vol. 64, no. 2, February, 1971,

119–122. (They show that the number of winning paths on the n×n×n cube is

3n2+6n+4, without any of the more general insights contained in Theorem 1.)

Historical Note: Except for the “conjecture” on nk with its counterexamples

(from 1999) in Section 4, the even more recent work described in Section 8, and

the results cited in references [1], [3], [4], and [5], the work in this paper predates

1972. Some results already appeared in [2]. Other results were presented at the

January, 1972, meeting of the MAA in Las Vegas, Nevada (in a session titled
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“Players, Probabilities, and Profits”, on the morning of 21 January) by S. W.

Golomb, in a talk titled “Games Mathematicians Play”.
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