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Stability Theory and its Variants

BRADD HART

Abstract. Dimension theory plays a crucial technical role in stability the-
ory and its relatives. The abstract dependence relations defined, although
combinatorial in nature, often have surprising geometric meaning in partic-
ular cases. This article discusses several aspects of dimension theory, such
as categoricity, strongly minimal sets, modularity and the Zil’ber principle,
forking, simple theories, orthogonality and regular types and in the third,
stability, definability of types, stable groups and 1-based groups.

One of the achievements of the branch of model theory known as stability
theory is the use of numerical invariants, dimensions, in a broad setting. In
recent years, this dimension theory has been expanded to include the so-called
simple theories. In this paper, I wish to give just a brief overview of the elements
of this theory. In the first section, the special case of strongly minimal sets is
considered. In the second section, the combinatorial definition of dividing is
given and how it leads to a general independence relation is outlined. Only in
the third section do stable theories appear and the theory surrounding them is
developed there with an eye to other papers in this volume.

1. Strongly Minimal Sets

Categorical Theories. One of the simplest questions one can ask about a first
order theory is how many models it has of a given cardinality. If T is a countable
theory with an infinite model then, by the Lowenheim–Skolem Theorem, it will
have at least one model of every infinite power. The situation we will look at
first is when a theory has exactly one model of some fixed power.

Definition 1.1. A theory T is λ-categorical if T has exactly one model up to iso-
morphism of cardinality λ. T is said to be totally categorical if T is λ-categorical
for every infinite cardinal λ. We will say that T is uncountably categorical if T
is λ-categorical for all uncountable λ.

Example 1.2. 1. The theory of a set in a language which has only equality is
totally categorical.
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1. Suppose that D is a countable division ring. The theory of a vector space
over D is uncountably categorical and is totally categorical if D is finite (that
is, D is a finite field). Here the language contains a binary function symbol for
addition and a unary function symbol for each scalar in D.

Two variants of this example are the following; fix an infinite dimensional vector
space V over a finite field F :

2. Infinite dimensional projective space over a finite field. P (V ) is the set of 1-
dimensional subspaces of V . Define an n+1-ary relation Rn on P (V ) as follows:
Rn(X1, X2, . . . , Xn, Y ) holds for X1, . . . , Xn, Y ∈ P (V ) if Y is contained in the
subspace generated by X1, . . . , Xn. The theory of P (V ) together with all the
Rn’s is totally categorical.

A more general version of this example involves the Galois group of F ; we de-
scribe it via its automorphism group. By a projective geometry, we will mean
a structure whose underlying set is P (V ) and whose automorphism group is
PGL(V ) o Gal(F/L) where L is some subfield of F . All of these examples are
totally categorical.

3. Infinite dimensional affine space over a finite field. Let τ(x, y, z) = x−y+z and
for every f ∈ F , let λf (x, y) = λx+ (1− λ)y. The theory of (V, τ, {λf : f ∈ F})
is also totally categorical.

As with the projective space examples above, there are more general affine space
examples. By an affine geometry we will mean a structure whose underlying
set is V and whose automorphism group is AGL(V ) o Gal(F/L) where L is a
subfield of F . Again, all these examples are totally categorical.

Here are a few other examples that will be commented on later:

5. The theory of (Z/4Z)ω as an abelian group; this theory is totally categorical.
6. The theory of an algebraically closed field of a fixed characteristic; this theory
is uncountably categorical.

It is possible for a theory to be ω-categorical without being totally categorical;
here are two examples:

7. The theory of the rationals as a linear order and the theory of an equivalence
relation with two classes, each infinite.

Of course there are many theories which are not categorical in any power, for
example:

8. the theory of the real field, Peano arithmetic and the theory of the integers
as an abelian group.

 Los conjectured that there were four possibilities for the categoricity spectrum:
a theory would be either totally categorical, uncountably categorical but not ω-
categorical, ω-categorical but not uncountably categorical or not categorical in
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any power. This was proved by Morley and is known as the Morley Categoricity
Theorem:

Theorem 1.3. If T is a countable theory which is λ-categorical for some un-
countable λ then T is λ-categorical for all uncountable λ.

One intuition behind this conjecture is that for an uncountably categorical the-
ory, the uncountable models are completely controlled by a single dimension and
that by specifying that dimension, one specifies the isomorphism type of the
model. I want to discuss the key ingredients of the proof of this theorem but
first I want to indicate another theorem related to categoricity.

Theorem 1.4 ( Los–Vaught Test). If T is categorical and has no finite models
then T is complete.

It follows then that examples 5, 6 and 7 above are complete. The first four
examples above have finite models and are not complete. One can check that
these four examples are all finitely axiomatized. The theory of the infinite models
of these theories is then axiomatized by these finitely many axioms together with
infinitely many sentences expressing the fact that the models are infinite. Various
conjectures arose of which I will only state two:

1. Is there a finitely axiomatized, totally categorical theory?
2. Is every totally categorical theory finitely axiomatized modulo “axioms of

infinity”?

We will say more about these conjectures later but to answer them, one needs a
very detailed understanding of the models of totally categorical theories. Histori-
cally, this arose through an understanding of the proof of the Morley Categoricity
Theorem.

We will work throughout this paper with a countable, complete theory T with
infinite models. For convenience, fix a structure M which is a λ-saturated model
of T for some big cardinal λ. λ will be larger than any set of parameters or any
submodel we will choose throughout our discussions. The following is a critical
definition.

Definition 1.5. An infinite definable set X ⊆Mn for some n is called strongly
minimal if every definable subset of X is either finite or cofinite. Here the
definable sets may be definable with parameters.

1. In the examples we saw early, the entire model (the set defined by x = x) is
strongly minimal in the following cases: an infinite pure set, an infinite vector
space over a countable division ring, an infinite projective space over a finite
field, an infinite affine space over a finite field and any algebraically closed
field of a fixed characteristic. The case of either projective or affine space over
a finite field follows from the corresponding case of an infinite vector space.
For an infinite set, an infinite vector space or an algebraically closed field, it
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is enough to check atomic formulas by quantifier elimination in each case and
the solution set of an atomic formula is finite in all cases.

2. In the case of the theory of (Z/4Z)ω as an abelian group, the entire model is
not strongly minimal but the set defined by x+x = 0 is. Again, this example
has quantifier elimination which makes it easy to check this set is strongly
minimal.

3. A theory does not have to be uncountably categorical to have a strongly
minimal set: in the theory of an equivalence relation with two classes each
infinite, either equivalence class is strongly minimal.

I wish to discuss dimension theory for strongly minimal sets so let me remind
you of the definition of a pregeometry.

Definition 1.6. A pregeometry (A, cl) is a set A together with a closure oper-
ator cl : P(A)→ P(A) such that:

1. for any B ⊆ A, B ⊆ cl(B) = cl(cl(B)),
2. if B ⊆ C ⊆ A then cl(B) ⊆ cl(C),
3. if B ⊆ A and b ∈ cl(B) there is a finite B0 ⊆ B such that b ∈ cl(B0), and
4. (Steinitz exchange) if B ⊆ A, b ∈ cl(B ∪ {c}) \ cl(B) then c ∈ cl(B ∪ {b}).

Definition 1.7. If (A, cl) is a pregeometry, we say that B ⊆ A is independent
if b 6∈ cl(B \ {b}) for any b ∈ B. A basis for a set C is an independent set B ⊆ C
such that C ⊆ cl(B).

Proposition 1.8. Suppose (A, cl) is a pregeometry . Then for any B ⊆ A, any
maximal independent subset of B is a basis for B. Moreover , any two bases for
B have the same cardinality .

We now want to consider the closure operator aclX on a definable set X. Suppose
that X is defined over a set of parameters d̄. Then aclX(Y ) = acl(Y ∪ {d̄}) ∩X
for Y ⊆ X. It is routine to check that aclX is a closure operator on X which
satisfies the first three properties from the definition of pregeometry.

Proposition 1.9. If X is a strongly minimal set then aclX defines a pregeom-
etry on X.

Proof. We need only to check the exchange property. Suppose that a ∈
aclX(C ∪ {b}) \ aclX(C). Suppose that ϕ(x, y) is a formula with parameters
from C which expresses that fact that a is algebraic over b. We can choose ϕ
so that ϕ(a, b) holds and there is an N so that for every b′ there are at most N
realizations of ϕ(x, b′). Now suppose that {ai : i < N + 1} is a set of distinct
realizations of tp(a/C) (remember that a is not algebraic over C).

For the sake of contradiction, suppose that b 6∈ aclX(C ∪ {a}). This means,
in particular, that ϕ(a,M) ∩X is infinite. Since X is strongly minimal, this set
is cofinite, so ϕ(ai,M) ∩X is cofinite for each i < N + 1. Hence there is b′ ∈ X
so that ϕ(ai, b′) holds for all i < N + 1 which contradicts the choice of N . So in
fact, b ∈ aclX(C ∪ {a}). �
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The following is easy by compactness.

Proposition 1.10. If X is strongly minimal and ϕ(x, y) is any formula then
there is a number N so that for any b, if

∣∣{a ∈ X : ϕ(a, b) holds}
∣∣ > N then

ϕ(X, b) is infinite.

How will strongly minimal sets be used in trying to understand the models?
Suppose that X is a strongly minimal set defined over parameters d̄ and further,
that I and J are two sets of elements from X, independent with respect to aclX .
The claim is that any injection from I to J is a d̄-elementary map. What this
amounts to showing is that for any set B ⊆ X there is a unique nonalgebraic
type in X over B ∪{d̄}. The latter is true because for any formula over B ∪{d̄},
either it or its negation is an algebraic formula.

To summarize then, suppose X is a strongly minimal set defined over d̄. Now
if N is a model containing d̄ then to understand the elementary type of X ∩N
over d̄ one needs only to know the dimension of X∩N for then X∩N is algebraic
over any basis.

But do uncountably categorical theories contain strongly minimal sets? Sup-
pose that M itself is not strongly minimal. Then one can find an infinite, co-
infinite definable set X ⊆M . Let X0 = X and X1 = M \X. In general suppose
that we have defined an infinite set Xη where η is a finite sequence of 0’s and 1’s.
If Xη is not strongly minimal then it contains an infinite, co-infinite subset Y
which we label Xη0 and let Xη1 = Xη \ Y . In this way, we produce uncountably
many consistent partial types over countably many parameters. Compare this
with the following fact due to Ehrenfeucht.

Fact 1.11. For any countable theory T with infinite models and any uncountable
cardinal λ, there is a model of T , M of size λ with the property that for every
countable set A ⊆M , the number of types realized in M over A is countable.

This naturally leads to the following definition.

Definition 1.12. A theory T is said to be ω-stable if for every countable
A ⊆M , S(A) is countable.

So above we have proved the following proposition.

Proposition 1.13. A countable theory T which is uncountably categorical is
ω-stable.

Corollary 1.14. Any countable, uncountably categorical theory has strongly
minimal sets.

Now there are two questions I want to address in the rest of this section and in
some sense they represent two different directions in what is known as stability
theory:

1. In an uncountably categorical theory, how is the rest of the model related to
the strongly minimal set?
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2. What can the strongly minimal set look like/be?

Let’s consider the first question. One of the means of measuring dimension in
model theory is via ranks. The first and the one which most closely resembles
dimension from algebraic geometry is Morley rank (written RM for Rang Mor-
ley). In the following definition, remember that we are working in a saturated
model of the theory at hand and that definable means definable in that model.

Definition 1.15. For a nonempty definable set X, we define RM(X) induc-
tively:

1. RM(X) ≥ 0;
2. for a limit ordinal δ, RM(X) ≥ δ if and only if RM(X) ≥ α for all α < δ;
3. RM(X) ≥ α + 1 if and only if there are definable subsets Yi of X for i ∈ ω
which are pairwise disjoint and such that RM(Yi) ≥ α.

RM(X) = α if RM(X) ≥ α and RM(X) 6> α. RM(X) = ∞ if RM(X) ≥ α for
all α. If ϕ(x) is a consistent formula then by RM(ϕ(x)) we mean the Morley
rank of the set this formula defines.

Fact 1.16. 1. Morley rank is invariant ; that is, if ā and b̄ have the same type
over the empty set and ϕ(x, ā) is consistent then RM(ϕ(x, ā)) = RM(ϕ(x, b̄)).
2. If X ⊆ Y then RM(X) ≤ RM(Y ).
3. RM(

⋃n
i=1Xi) = max{RM(Xi) : i = 1, . . . , n}.

4. There is an ordinal α that depends only on the theory T such that if RM(X) ≥
α then RM(X) =∞.

Remarks 1.17. In the case of algebraically closed fields, Morley rank and
algebro-geometric dimension coincide, that is, RM(V ) = dim(V ) for V an alge-
braic variety.

Definition 1.18. If RM(X) = α <∞ then the Morley degree of X, dM(X), is
the largest number k so that there are pairwise disjoint definable subsets of X,
Yi, with RM(Yi) = α for i = 1, . . . , k.

Fact 1.19. If RM(X) <∞ then dM(X) is well-defined .

Proof. Suppose that RM(X) = α. For this proof say that a definable subset
Y of X is α-irreducible if RM(Y ) = α and there do not exist Z1, Z2 ⊆ Y

which are disjoint and have Morley rank α. It is easy to show that the fact
that RM(X) 6> α implies both that there are α-irreducible subsets of X and
that any maximal collection of such is finite. So suppose that {Y1, . . . , Ym} and
{Z1, . . . , Zn} are two maximal collections of α-irreducible subsets of X. We may
assume that

⋃m
i=1 Yi =

⋃n
j=1 Zj = X. So

Zj =

( m⋃
i=1

Yi

)
∩ Zj =

m⋃
i=1

(Yi ∩ Zj)



STABILITY THEORY AND ITS VARIANTS 137

so there is at least one i so that RM(Yi∩Zj) = α. Since Zj is α-irreducible, there
is at most one such i. So the map sending j to that i such that RM(Zj ∩Yi) = α

is well-defined and injective. Symmetry shows that it is a bijection and so k = m.
�

Note that in the previous proof we don’t show that the decomposition of X into
Morley degree 1 pieces is unique but only that it is “α-unique”: RM(Yi4Zj) < α.
It is also worth noting that a strongly minimal set has Morley rank and Morley
degree 1.

Proposition 1.20. T is ω-stable if and only if RM(X) <∞ for every X.

Proof. Suppose there is a definable set X such that RM(X) = ∞. By Fact
1.16 there is an α such that if RM(Y ) ≥ α then RM(Y ) =∞. So since RM(X) ≥
α+ 1, choose two disjoint subsets of X both of which have Morley rank greater
than or equal to α. By the choice of α, both of these sets have Morley rank ∞.
Repeating this argument one can build a binary tree of height ω of definable sets
such that each branch is consistent and no two branches are mutually consistent.
This contradicts ω-stability.

Now suppose that RM(X) < ∞ for every X. Fix a countable model M of
T . For every p ∈ S(M), associate a formula ϕp ∈ p so that ϕp has the least
Morley rank of all formulas in p and among those has the least Morley degree. It
is easy to see then that this formula uniquely determines p. But there are only
countably many formulas over M so S(M) is countable. �

Now we will address how a structure is built or constructed over a strongly
minimal set.

Definition 1.21. 1. A type p ∈ Sn(A) is said to be isolated if there is a formula
ϕ ∈ p such that if ϕ ∈ q ∈ Sn(A) then p = q (p is isolated in the Stone space
topology on Sn(A)).
2. If A ⊆ N ≺ M then N is said to be a prime model over A if whenever
A ⊆ N ′ ≺M then there is an elementary map f : N → N ′ fixing A.
3. N is said to be constructible over A if N = {ai : i < α} and, for every i,

tp(ai/A ∪ {aj : j < i})

is isolated.

Fact 1.22. 1. If N is constructible over A then N is prime over A.
2. If T is ω-stable then there are constructible models over all sets.
3. If N1 and N2 are constructible over A then N1 and N2 are isomorphic over A.

Proof. The first is straightforward. For the second, the main point is that if
you fix a set A and any consistent formula ϕ(x) over A then the type of least
Morley rank and degree containing ϕ(x) is isolated. The third fact was proved
by J. P. Ressayre. �
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The main structure theorem for uncountably categorical theories is:

Theorem 1.23 [Baldwin and Lachlan 1971]. If T is uncountably categorical
then there is an isolated type p(ȳ) over the empty set and a formula ϕ(x, ȳ) such
that whenever N is a model of T and ā ∈ N realizes p then ϕ(x, ā) defines a
strongly minimal set and N is constructible and minimal over ϕ(N, ā).

That is, the isomorphism type of N is determined by the dimension of the set
ϕ(N, ā).

Example 1.24. An example of what the above theorem does not say is given by
the theory of (Z/4Z)ω as an abelian group. It would be nice if every model of an
uncountably categorical theory was algebraic over a basis for a strongly minimal
subset of the model (as in the case of algebraically closed fields) but (Z/4Z)ωis
a counterexample to this. For in this group, every element a is isolated over the
strongly minimal set 2x = 0 by the formula, 2x = 2a. But this formula has
infinitely many solutions.

Returning now to the question of what a strongly minimal set can be, we make
a definition which makes sense for any pregeometry.

Definition 1.25. A pregeometry (X, cl) is said to be modular if whenever
A,B ⊆ X are finite dimensional, closed subsets of X then

dim(A) + dim(B) = dim(A ∩B) + dim(A ∪B)

(X, cl) is said to be locally modular if the above equality holds whenever A∩B
is nonempty.

A strongly minimal set is said to be modular or locally modular if the associ-
ated pregeometry is.

Example 1.26. 1. An infinite set, an infinite vector space over a division ring or
a projective space over a finite field are all examples of modular strongly minimal
sets.

If the pregeometry (X, cl) satisfies cl(A) =
⋃
a∈A cl(a) for all A ⊆ X then

the pregeometry is said to be trivial or degenerate. An infinite set is such a
pregeometry.
2. An affine space over a finite field is locally modular but not modular; two
distinct parallel lines are a counter-example to modularity.
3. An algebraically closed field is not locally modular (see Example 1.8 on page
77 of [Pillay 1996]).

One of the guiding principles of geometric model theory is the Zil’ber Principle
(for a general discussion, see [Peterzil and Starchenko 1996]):

Zil’ber Principle. Under suitable geometric or topological conditions, a non-
locally modular strongly minimal set interprets an infinite field .

A particular instance of this principle can be applied to simple, algebraic groups.
Suppose that G is a simple, algebraic group over an algebraically closed field F .
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Viewed as an abstract group G is not locally modular and in fact, G interprets
a field F ′ which is isomorphic to F .

More information regarding the Zil’ber Principle appears in [Marker 2000]. In
the remaining part of this section, I wish to point out a special case of the Zil’ber
Principle in ω-categorical theories. The following theorem is due to Cherlin,
Harrington and Lachlan [Cherlin et al. 1985] and Zil’ber [1984].

Theorem 1.27. An ω-categorical , strongly minimal set is locally modular .

One can in fact say more but we need a definition first.

Definition 1.28. A strongly minimal set X is said to be strictly minimal if
aclX(a) = {a} for all a ∈ X.

For instance, a projective or affine geometry over a finite field is strictly minimal
but a vector space over a finite field is not. In general, to obtain a strictly
minimal set from an ω-categorical strongly minimal set, one first removes the
algebraic closure of the empty set (a finite set in the ω-categorical case) and
then quotients by the definable equivalence relation of interalgebraicity. In this
way, one can see that, except for finitely many points, an ω-categorical, strongly
minimal set is a finite cover of a strictly minimal set.

The following theorem provides an enumeration of all ω-categorical, strictly
minimal sets.

Theorem 1.29. An ω-categorical strictly minimal set is either a pure set , or a
projective or affine geometry over a finite field .

One can use this more precise information about ω-categorical, strictly minimal
sets to understand the structure of the prime model discussed above in the case
of a totally categorical theory. Fix a totally categorical theory T and any model,
M , of T .

Fact 1.30. For any finite, algebraically closed set B ⊆ M and a 6∈ B, there is
c ∈ acl(B ∪ {a}) such that tp(c/B) is strictly minimal .

A more global version of this local fact is:

Fact 1.31. For any a ∈ M , there is a number n and a0, . . . , an ∈ acl(a) such
that a = an and for every i, tp(ai/a0, . . . , ai−1) is either algebraic or strictly
minimal .

Example 1.32. To see how this works, let’s return to the example of the abelian
group, (Z/4Z)ω. Recall that it is not algebraic over the strongly minimal set
2x = 0. However, if we fix any element a and let 2a = b then we see that
the number n in the previous fact is 2: b is either 0 (and hence algebraic over
the empty set) or tp(b/∅) is strictly minimal. In either case, tp(a/b) is strictly
minimal; in the latter case, the strictly minimal set is an affine geometry.

The picture then to have of this example is a base set represented by the
strictly minimal set 2x = 0 and then above each element of this set, a “fibre”
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which is itself a strictly minimal set. To completely understand the structure
then one must know what the strictly minimal sets are (and this is given by the
Theorem above) and how the fibres interact (often the hardest part).

Hrushovski used this type of analysis to prove the following:

Theorem 1.33 [Hrushovski 1989]. Any totally categorical theory is finitely ax-
iomatized modulo “axioms of infinity” (which express the fact that the strongly
minimal set is infinite).

2. Dividing

Before we can introduce the general notion of dimension, we must introduce
a basic model theoretic definition.

Definition 2.1. Suppose that (I,< ) is an infinite linear order and A is a
subset of a model M . A sequence {ai : i ∈ I} of tuples from M is said to be
indiscernible over A if, whenever i1 < · · · < in and j1 < · · · < jn are sequences
from I, tp(ai1 . . . ain/A) = tp(aj1 . . . ajn/A).

Example 2.2. 1. A transcendence basis in an algebraically closed field, ordered
in any way, is an example of an indiscernible sequence over the empty set.
2. (Q,< ) with the usual order is also an example of an indiscernible sequence
over the empty set.

We now introduce the most important definition on our way towards a general
dimension theory. This definition is due to Shelah [1978].

Definition 2.3. 1. A formula ϕ(x, a) (and the set it defines) is said to divide
over A if there is an sequence I, indiscernible over A, with a ∈ I such that
{ϕ(x, b) : b ∈ I} is inconsistent.
2. A definable set X (and the formula which defines it) is said to fork over A if
X is contained in the union of finitely many definable sets, each of which divides
over A.
3. A type p divides (forks) over A if there is ϕ ∈ p which divides (forks) over A.

We introduce a ternary relation symbol ^ between subsets of M as follows:

A^C B if and only if tp(A/B ∪ C) does not divide over C.

We will say that A and B are independent over C if A^C B although the
justification for this terminology will only come later.

Example 2.4. 1. Suppose that X is a strongly minimal set defined over A.
Then any infinite, definable subset of X does not divide over A.

To see this, by compactness, it is enough to see that any finitely many A-
conjugates of X have a nonempty intersection. But X, and each of its conjugates,
is cofinite and so the intersection is nonempty.
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2. In an ω-stable theory, a type p ∈ S(B) does not divide over A ⊆ B if
RM(p) = RM(p|A).

To see this, suppose that p divides over A. Then there is a sequence {pi :
i ∈ ω} of A-conjugates of p so that for some n, any n distinct pi’s are mutually
inconsistent. We can assume that pi ∈ S(Bi) and that the sequence {Bi : i ∈ ω}
is indiscernible over A. Choose ϕ ∈ p|A so that RM(ϕ) = RM(p|A). Now
since the pi’s are n-inconsistent, we can find ψi(x, bi) ∈ pi and m ≤ n with the
following properties:

1. ψ(x, bi) strengthens ϕ for every i;
2. if we let θk =

∧
mk≤i<m(k+1) ψi(x, bi) then RM(θk) = RM(ϕ) for all k;

3. RM(θk ∧ θl) < RM(ϕ) for all k 6= l

From the properties of Morley rank, we see that the formulas{
θk ∧

∧
l<k ¬θl : k ∈ ω

}
are pairwise inconsistent, strengthen ϕ and have the same Morley rank as ϕ
which is a contradiction.

3. Suppose our model is an infinite vector space over a finite field with a non-
degenerate symplectic bilinear form. Then any nonalgebraic one-type does not
divide over the empty set. For suppose that p is a nonalgebraic 1-type over a
subspace A (in general, it is enough to check that all 1-types do not divide over
small sets). Let {Ai : i ∈ ω} be any indiscernible sequence with A0 = A and let
B be their common intersection. Then it follows that {Ai : i ∈ ω} is linearly
disjoint over B. Now p is determined by the linear map f it defines on A (for
all a ∈ A, f(a) = α if and only if 〈x, a〉 = α ∈ p). If we let pi be the conjugate
of p over Ai and fi be the corresponding conjugate of f then the consistency of⋃
i∈ω pi is equivalent to the ability to extend all the maps fi to a linear map on

the subspace generated by Ai’s. The latter is clear by the linear disjointness of
the Ai’s over B.

Dividing and forking satisfy many properties in all theories.

1. Both dividing and forking are invariant under automorphisms of the large,
saturated model that we are working in.

2. If X ⊆ Y are definable sets and Y divides (forks) over A then so does X.
3. (Extension) If A ⊆ B ⊆ C and p ∈ S(B) does not fork over A then p has an

extension in S(C) which does not fork over A.
4. (Finite Character) A^C B if and only if a^c b for every finite a ∈ A, b ∈ B

and c ∈ C.
5. If A ⊆ B, a ∈ acl(B) and a^A B then a ∈ acl(A).
6. (Weak transitivity) If B ⊆ C ⊆ D and A^B D then A^B C and A^C D.
7. (Left transitivity) If C ⊆ B ⊆ A, A^B D and B ^C D then A^C D.

The first two properties listed above follow immediately from the definitions.
The extension property is the entire reason for defining forking and is easily
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verified by compactness. Both finite character and weak transitivity are easily
verified. Left transitivity is extremely useful (see [Hart et al. 1998], section 4); a
proof can be found in [Shelah 1980] and [Kim 1998].

Definition 2.5. 1. A sequence {ai : i < α} is independent over A if, for every
j, aj ^A {ai : i < j}.
2. A Morley sequence for a type p ∈ S(A) is a sequence of realizations of p which
is both independent and indiscernible over A.

Key general assumptions

1. (Forking equals dividing) Whenever a definable set forks over a set A, it
divides over A.

2. (The Kim property, KP) A formula ϕ(x, a) does not divide over A if and
only if there is a Morley sequence I in tp(a/A) such that {ϕ(x, b) : b ∈ I} is
consistent.

In a theory which satisfies the key general assumptions the following properties
hold, trivially, dividing satisfies the extension property. Far less trivially, we
have

Theorem 2.6. In a theory which satisfies the key general assumptions, dividing
is symmetric, that is, A^C B if and only if B ^C A.

As a corollary of the left transitivity property,

Corollary 2.7. In a theory which satisfies the key general assumptions, di-
viding is transitive; that is, if C ⊆ B ⊆ A and D ^B A and D ^C B then
D^C A.

In fact recently in [Kim 1999], Kim has shown the the key general assumptions
are equivalent to dividing being symmetric.

The most important of the properties that dividing satisfies in certain theories
is the following (proved in [Kim and Pillay 1997]):

Theorem 2.8. (Type amalgamation over a model ; also known as the Inde-
pendence Theorem) Fix a theory which satisfies the key general assumptions.
Suppose that A and B both contain a model M and are independent over M . If
p and q are types over A and B respectively and both are nonforking extensions
of a common type over M then p and q have a common nonforking extension.

Simple theories

Definition 2.9. A theory T is simple if every type does not divide over a set
of size at most |T |. We say that in such a theory, dividing (or forking) satisfies
local character.

Theorem 2.10. Simple theories satisfy the key general assumptions; that is,
forking equals dividing and the Kim property holds.
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Example 2.11. 1. Any ω-stable theory is simple. This follows from Example
2.4.2.

2. The theory of an infinite vector space over a finite field with a nondegenerate
symplectic bilinear form is simple. This follows from Example 2.4.3.

3. The theory of the random graph is simple. One can show this in a manner
similar to (but easier than) Example 2.4.3; see the remarks after the next theorem
for an alternative approach.

4. The generic triangle-free graph is not an example of a simple theory. There
are several ways to see this; the one I present will be an application of type
amalgamation.

The first observation is that the only indiscernible sequence of singletons in
any model of this theory has no edges between the points. Otherwise, any three
points will form a triangle.

So suppose that the theory of the generic triangle-free graph is simple. Fix a
model M (we do this only to match the form of the type amalgamation theorem).
I claim that any two points a and b, not in M , with an edge between them are
independent over M . This follows from the first observation since if we consider
an M -indiscernible sequence {bi : i ∈ ω} starting with b then there are no edges
between the bi’s so there is nothing inconsistent about the type which contains
the type of a over M and the statement that x is connected to each of the bi’s.
But then if we let pa be the type of an element connected to a but not to any
element of M and pb be the similar type, connected to b but nothing in M , then
by what we just said, pa and pb are nondividing extensions of their common
restriction to M . However, any point which would realize pa and pb would form
a triangle. Since type amalgamation fails, this theory cannot be simple.

5. The theory of the real field is not simple; the theory of (Q,< ) is not simple.
Let’s show that (Q,< ) is not simple (real closed fields can be done in a

similar manner). We will show that dividing is not symmetric. Consider the
type p(x; y, z) determined by “y < x < z”. For any a it is fairly clear that
p(a; y, z) does not divide over the empty set (for any sequence of singletons in
any model of this theory it is consistent that there is something bigger than
and something smaller than them all). However, if a < b then p(x; a, b) does
divide over the empty set. For we can choose an indiscernible sequence a = a0 <

b = b0 < a1 < b1 < a2 < b2 < · · · for which even p(x; a, b) ∪ p(x, a1, b1) is not
consistent.

The following characterization theorem shows the connection between the ex-
istence of an independence relation satisfying many of the properties we have
mentioned up until now and simpicity. Its proof is due to Kim and Pillay and
appears in [Kim and Pillay 1997].

Theorem 2.12. A theory is simple if and only if there is an invariant ternary
relation on sets which has finite and local character , is symmetric and transitive
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and satisfies extension and type amalgamation over models. If such a ternary
relation exists then it must be nondividing .

The usefulness of this theorem cannot be overstated. In practice, when one
encounters a theory “in nature”, it often comes with a suggestion for an inde-
pendence relation. A case in point is the theory of algebraically closed fields
with a generic automorphism (ACFA, see [Chatzidakis 2000]). It is frequently
easier to check that the example satisfies the properties listed above then it is
to work through the definition of dividing. For instance, for the random graph,
suppose A is a subgraph of B and C, and say that B and C are independent
over A if and only if B ∩C = A. Then it is straightforward to check that all the
properties listed in the characterization theorem are satisfied and so the random
graph is simple (and this independence relation is the dividing relation).

Orthogonality, supersimplicity and regular types. Any sufficiently gen-
eral notion of independence leads to a derived notion of orthogonality; see the
almost axiomatic treatments in [Makkai 1984] and [Shelah 1978]. In the case
of simple theories, the details are worked out in [Hart et al. 1998] where the
following definitions appear.

Definition 2.13. 1. If p, q ∈ S(A) then p and q are almost orthogonal if
whenever a and b realize p and q respectively then a and b are independent over
A.
2. p and q are said to be orthogonal if all their nonforking extensions to common
domains are almost orthogonal.
3. p is regular if it is orthogonal to all its forking extensions.

It is shown in [Hart et al. 1998] that regular types are the dimension carrying
objects in simple theories.

Proposition 2.14. If p ∈ S(A) is regular then independence over A is a
pregeometry on the realizations of p.

Example 2.15. 1. The nonalgebraic type over the empty set in a strongly
minimal set is a regular type.
2. The unique rank ω 1-type over the empty set in the theory of differentially
closed fields of characteristic zero is a regular type. (See [Marker 2000] in this
volume.)

There is a rank which is more general than Morley rank called SU-rank; it is
also defined inductively:

Definition 2.16. For a type p,

1. SU(p) ≥ 0.
2. SU(p) ≥ α + 1 if and only if there is q, a forking extension of p, such that
SU(q) ≥ α.
3. For a limit ordinal δ, SU(p) ≥ δ if and only if SU(p) ≥ α for all α < δ.
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4. SU(p) = α if SU(p) ≥ α and SU(p) 6≥ α + 1; SU(p) =∞ if SU(p) ≥ α for all
α.

A theory for which SU(p) < ∞ for all p is called supersimple. The following
appears in [Hart et al. 1998] and shows that it is supersimple theories that have
“enough” regular types.

Proposition 2.17. If T is simple and SU(p) < ∞ then p is nonorthogonal to
a regular type.

3. Stability

The rationale for this section stems from the need for many of concepts in
[Chatzidakis 2000]. On the other hand, many discussions of dimension theory
in a model theoretic context will revolve around the notions here; we start with
one which predates simplicity.

Definition 3.1. A partial type p is stable if there is a λ such that, for any set
A of size λ, the number of extensions of p over A is of size at most λ.

Example 3.2. 1. The partial type x = x is stable in all of the following theories:
algebraically closed fields of any fixed characteristic, differentially closed fields of
characteristic zero, any strongly minimal set. In such a case, one says that the
theory is stable.
2. Consider a theory whose universe is partitioned by two unary predicates U
and V ; U contains a an algebraically closed field and V contains a copy of a real
closed field. It is easy to see that the partial type U(x) is stable.
3. Consider a theory again with two unary predicates which partition the uni-
verse, call them V and V ∗. The model (V, V ∗) will be an infinite vector space
over a finite field, V and its dual V ∗. Neither of these predicates is stable even
though the theory of a vector space over any field is stable in its own right.

Definability of types. Independence on realizations of stable types has a more
intrinsic definition than the one found in the last section which depends on the
following definition.

Definition 3.3. A type p ∈ S(A) is definable if, for every formula ϕ(x, y), there
is a formula dϕ(y, a) with a ∈ A such that, for every b ∈ A, ϕ(x, b) ∈ p if and
only if dϕ(b, a) holds.

Example 3.4. Suppose that M is a left R-module for some ring R. M is
considered a structure in the language with 0, +, − and a unary function symbol
for every r ∈ R. The following is a theorem of Baur ([Baur 1976]).

Theorem 3.5. If T = Th(M) then any definable set is a boolean combination
of cosets of definable subgroups. In fact , each coset is an instance of a formula
ϕ(x, y) of the form ∃z(Axz = y) where A is an R-matrix and the subgroup is
defined by ϕ(x, 0).
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Now if p is a type over M and ϕ(x, y) = ∃z(Axz = y) then the ϕ-definition dϕ is

1. false, if p does not contain an instance of ϕ and
2. ϕ(b, y), if ϕ(x, c) ∈ p for some c ∈M and ϕ(b, c) holds for some b ∈M .

Here are two key equivalences to the notion of a stable type.

Theorem 3.6. The following are equivalent :

1. p is a stable type.
2. There is no formula ϕ(x, y) and realizations ai of p and elements bi for i ∈ ω
such that ϕ(ai, bj) holds if and only if i < j.
3. Every extension of p is definable.

In a stable theory or for a stable type, nonforking and the definability of types
are very closely related.

Fact 3.7. If q ∈ S(B) is a stable type and A ⊆ B then q does not divide over
A if and only if q is defined almost over A.

Corollary 3.8. If q is a stable type then q does not divide over a set of size
at most |T |.

Corollary 3.9. Stable theories are simple.

Stability has added advantages over simplicity and this is no more evident than
in the notion of multipicity.

Definition 3.10. If p ∈ S(A) then the multiplicity of p is the supremum, if it
exists, over all B, A ⊆ B of |{q ∈ S(B) : q is a nonforking extension of p}|.

Fact 3.11. A type p is stable if and only if every extension of p has bounded
multiplicity and does not divide over a set of size |T |.

A stable type with multiplicity one is called stationary. A stable type over a
model is stationary.

For the rest of this paper, I will assume that we are working inside a stable
type p. All of the forking technology discussed in the previous section goes
through in this context. If the reader likes, there is no real loss in assuming that
the ambient theory is simple.

The canonical base

Definition 3.12. 1. If ϕ(x, a) defines X then the canonical parameter of X,
written dϕ(x, a)e or just dϕe, is the element of M eq, a/Eϕ, where Eϕ(x, y) :=
∀z(ϕ(z, x)←→ ϕ(z, y)).
2. For a stationary type p, the canonical base of p, Cb(p) = dcl{ddϕe : ϕ}.

The canonical base of a stationary type p has many properties.

Fact 3.13. Suppose that p is a stationary type and p is the nonforking extension
of p to a large saturated model M .
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1. p does not fork over Cb(p).
2. Cb(p) is the unique subset C of M eq such that for all automorphisms σ of M ,
σ fixes C if and only if σ fixes p.
3. Cb(p) is contained in the definable closure of any Morley sequence in p.

It is immediate that if T has elimination of imaginaries and is stable then the
canonical base of any stationary type lies in M not M eq.

1-based theories and types. In this last subsection, we make an attempt to
tie together many of the concepts from this paper. Additionally, the Theorem
below is used critically in [Chatzidakis 2000] where the concepts are discussed
in more detail.

Definition 3.14. 1. If p ∈ S(C) and A is a set of realizations of p we will write
Ā for acleq(A ∪ C).
2. p ∈ S(C) is 1-based if for every set A of realizations of p and every model M
containing A, Cb(A/M) ⊆ Ā.

Fact 3.15. p ∈ S(C) is 1-based if and only if for every pair A and B of sets of
realizations of p, Ā ^Ā∩B̄ B̄.

Remarks 3.16. As the previous fact points out, 1-based types have an indepen-
dence relation which is as simple as possible. The terminology “1-based” stems
from the fact that in general, for a stationary type, the canonical base lies in
the closure of any Morley sequence in the type; for 1-based types, the canonical
base of any extension lies in the closure of a single realization of the type.

Example 3.17. 1. A modular, strongly minimal set is 1-based.
2. Any complete theory of modules is 1-based.

Definition 3.18. If G is the set of realizations of a partial type p then we say
G is a stable group if there is a definable, binary function ∗ so that (G, ∗) is a
group.

Remarks 3.19. A stable group may have more structure than just a group
structure; for example, by the previous definition, a field is a stable group.

The following Theorem, found in [Hrushovski and Pillay 1987], shows how the
strong model theoretic assumptions we have mentioned in this section impact on
the definable sets in a stable group.

Theorem 3.20. A type-definable group G is stable and 1-based if and only if
every definable subset is equivalent to a boolean combination of cosets of definable
subgroups of Gn for some n.
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