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Asymptotic Versions of Operators
and Operator Ideals

VITALI MILMAN AND ROY WAGNER

Abstract. The goal of this note is to introduce new classes of operator
ideals, and, moreover, a new way of constructing such classes through an
application to operators of the asymptotic structure recently introduced
by Maurey, Milman, and Tomczak-Jaegermann in Op. Th. Adv. Appl. 77
(1995), 149–175.

1. Preliminaries

1.1. Notation. We follow standard Banach-space theory notation, as outlined
in [LTz].

Throughout this note X will be an infinite dimensional Banach-space with
a shrinking basis {ei}∞i=1. The notation [X]n will stand for the head subspace
(span{ei}n

i=1) and [X]>n for the tail subspace (the closure of span{ei}∞i=n+1). Pn

and P>n are the coordinate-orthogonal projections on these subspaces respec-
tively.

A basis {ei} is equivalent to a basis {fi} if

C2

∥∥∥
∑

aifi

∥∥∥ ≤
∥∥∥
∑

aiei

∥∥∥ ≤ C1

∥∥∥
∑

aifi

∥∥∥

for any scalars {ai}. The equivalence is quantified by the ratio C1/C2; the closer
it is to 1, the better the equivalence.

A vector is called a block if it has finite support, that is, if it is a finite
linear combination of elements of the basis. The blocks v and w are said to be
consecutive (v < w) if the support of v (the set of elements of the basis that form
v as a linear combination) ends before the support of w begins. S(X)n

< is the
collection of all n-tuples of consecutive normalised blocks; thus S(X)1< means
normalised finite support vectors.
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1.2. An intuitive introduction to asymptotic structure. The language of
asymptotic structure has been introduced to study the essentially infinite dimen-
sional structure of Banach-spaces, and to help bridge between finite dimensional
and infinite dimensional theories. This approach does generalise spreading mod-
els, but takes an essentially different view. Formally introduced in [MMiT], it
has already been studied, extended and applied in [KOS], [OTW], [T], [W1]
and [W2]; it is closely related to the new surge of results in infinite dimensional
Banach-space theory, and especially to [G] and [MiT]. For formal arguments,
the most convenient terminology is the game terminology coming from [G], pre-
sented below. However, we choose to preface this by a less rigorous intuitive
introduction.

The main idea behind this theory is a stabilisation at infinity of finite dimen-
sional objects (subspaces, restrictions of operators), which repeatedly appear
arbitrarily far and arbitrarily spread out along the basis. Piping these stabilised
objects together gives rise to infinite dimensional notions: asymptotic versions
of a Banach-space X or of an operator acting on X.

To define this structure we first have to choose a frame of reference in the
form of a family of subspaces, B(X). It is most convenient to choose B(X) such
that the intersection of any two subspaces from B(X) is in B(X). The family of
tail subspaces is such a family; so is the family of finite codimensional subspaces,
but here we will work with the former. The construction proceeds as follows.

Fix n and ε. Consider the tail subspace [X]>N1 for some “very large” N1,
and take a normalised vector in this tail subspace. Consider now a further tail
subspace [X]>N2 , with N2 “very large”, depending on the choice of x1; choose
again any normalised vector, x2 in [X]>N2 . After n steps we have a sequence
of n vectors, belonging to a chain of tail subspaces, each subspace chosen ’far
enough’ with respect to the previous vectors.

The span of a sequence in X, E = span{x1, . . . , xn}, is called ε-permissible if
we can produce by the above process vectors {yi}n

i=1, which are (1+ε)-equivalent
to the basis of E, regardless of the choice of tail subspaces.

Now we can explain how far is “far enough”. The choice of the tail subspaces
[X]>Ni is such that no matter what normalised blocks are chosen inside them,
they will always form ε-permissible spaces. The existence of such “far enough”
choices of tail subspaces is proved by a compactness argument.

We can now consider basic sequences which are (1+ε)-equivalent to ε-permis-
sible sequences for every ε. These will be called n dimensional asymptotic spaces.
Our ε-permissible sequences are (1 + ε)-realizations in X of asymptotic spaces.

Finally, a Banach-space whose every head-subspace is an asymptotic space of
X is called an asymptotic version of X.

The same construction can be made for an operator T as well. In this case,
we would like to stabilise not only the domain (which is an asymptotic space),
but also the image and action of the operator. More precisely, our permissible
sequences will now be sequences {xi}n

i=1, such that we can find arbitrarily far
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and arbitrarily spread out sequences in our space, which are closely equivalent
to {xi}n

i=1, and on top of that, are mapped by T to sequences closely equivalent
to {T (xi)}n

i=1. The assumption that X has a shrinking basis promises that
{T (xi)}n

i=1 are close to successive blocks. In turn this means that the asymptotic
version of T , viewed as an operator from [xi]ni=1 to

[
T (xi)/‖T (xi)‖

]n

i=1
, is always

a formally diagonal operator.

1.3. The Game. The following game (up to slight formalities) is used in
[MMiT] to define asymptotic spaces. The game terminology comes from [G].

Definition 1. This is a game for two players. One is the subspace player,
S, and the other is the vector player, V. The “board” of the game consists of
a Banach-space with a basis, a natural number n, and two subsets of S(X)n

<:
Φ and Σ. Player S begins, and they play n turns. In the first turn player S
chooses a tail subspace, [X]>m1 . Player V then chooses a normalised block in
this subspace, x1 ∈ [X]>m1 . In the k-th turn, player S chooses a tail subspace
[X]>mk

. Player V then chooses a normalised block, xk, such that xk ∈ [X]>mk

and xk > xk−1.
V wins if it produces a sequence of vectors in Φ.
S wins if it forces the choices of V to be in Σ.
Note that in this game it is not always true that one player wins and the

other loses. Furthermore, in some cases, we are only interested in the winning
prospects of one player, and therefore may ignore either Φ or Σ.

If V has a winning strategy in this game for Φ, that is a recipe for producing
sequences in Φ considering any possible moves of S, we call Φ an asymptotic set
of length n. Formally this means:

∀m1 ∃x1∈X>m1 ∀m2 ∃x2∈X>m2 . . . ∀mn ∃xn∈X>mn

such that (x1, . . . , xn) ∈ Φ.

Note that this generalises an earlier notion of an asymptotic set for n = 1 (in
this context of tail subspaces, rather than block subspaces; compare [GM]).

If S has a winning strategy in this game for the collection Σ, we call Σ an
admission set of length n. Formally this means:

∃m1 ∀x1∈X>m1 ∃m2 ∀x2∈X>m2 . . . ∃mn ∀xn∈X>mn

such that (x1, . . . , xn) ∈ Σ

This terminology comes from admissibility criteria in the study of Tsirelson’s
space and its variants. An admission set contains all vector sequences beginning
“far enough” and spread out “far enough” — for some interpretation of the term
“enough”.

When the context is clear, we will omit the length, and simply write “an
asymptotic (admission) set”.
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Remarks 2. (i) Note that a collection containing an admission set is an ad-
mission set, and that a collection containing an asymptotic set is an asymptotic
set.

(ii) It is also useful to note that if V has a winning strategy for Φ, and S has
a winning strategy for Σ, then playing these strategies against each other will
necessarily produce sequences in Φ ∩ Σ.

In fact, in such a case V has a winning strategy for Φ∩Σ. Player V’s strategy
is as follows; player V plays his winning strategy for Φ, while pretending that the
subspace dictated to him in each turn is the intersection of the subspace actually
chosen by S with the subspace arising from the winning strategy for Σ.

The following is simply formal negation.

Lemma 3. Let Σ ⊆ S(X)n
<. Then either Σ is an admission set , or Σc is an

asymptotic set . These options are mutually exclusive.

Tail subspaces of a Banach-space form a filter. This allows us to demonstrate
filter (cofilter) behaviour for admission (asymptotic) sets.

Lemma 4. (i) Let Σ1, . . . , Σk ⊆ S(X)n
< be admission sets. Then

⋂k
j=1 Σj is

also an admission set .
(ii) Let Φ1, . . . , Φk ⊆ S(X)n

<, such that
⋃k

j=1 Φj is asymptotic. Then, for some
1 ≤ j ≤ k, Φj is asymptotic.

Proof. (i) Suppose at any turn of the game player S has to choose [X]>m1 in
order to win for Σ1, [X]>m2 in order to win for Σ2, . . ., and [X]>mk

in order to
win for Σk. If player S chooses [X]>m, where m = max{m1,m2, . . . , mk}, the
vector sequence chosen by player V will have to be in

⋂k
j=1 Σj .

(ii) Suppose for all 1 ≤ j ≤ k, Φj is not asymptotic. Then Lemma 3 implies that
Φc

j are all admission sets. By part 1 of the proof,
⋂k

j=1 Φc
j is an admission set.

Therefore, using Lemma 3 again,
⋃k

j=1 Φj is not asymptotic, in contradiction. ¤

1.4. Asymptotic versions. The following notions come from [MMiT].

Definition 5. An n-dimensional Banach space F with a basis {fi}n
i=1 is called

an asymptotic space of a Banach-space X, if for every ε > 0 the set of all
sequences in S(X)n

<, which are (1 + ε)-equivalent to {fi}i, is an asymptotic set.
A space X̃ is an asymptotic version of X, if all the spaces [X̃]n are asymptotic

spaces of X.
We use {X}∞ to denote the collection of asymptotic versions of a space X,

and {X}n to denote the collection of its n-dimensional asymptotic spaces.

Remark 6. The existence of asymptotic versions and spaces for every Banach-
space X is elementary, as observed in [MMiT]. Spreading models make obvious
examples of asymptotic versions. Existence of some special asymptotic versions
is dealt with in [MMiT]. In our existence theorem below we will prove that we
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can extract close realizations of an asymptotic version out of any sequence of
increasingly long asymptotic sets.

1.5. König’s Unendlichkeitslemma. The following combinatorial lemma
comes from [Kö]. Its proof is an elementary exercise. A rooted tree is simply
a connected tree with some vertex labelled as root. The root allows us to con-
sider the level of vertices in the tree.

Lemma 7. A rooted tree has an infinite branch emanating from the root if

(i) there are vertices arbitrarily far from the root , and
(ii) the set of vertices with any fixed distance to the root is finite.

This Lemma will be used to allow us to find asymptotic versions not only inside
the whole space, but also inside asymptotic subsets. This in turn will be used to
show, that if the collections of sequences with a certain property is asymptotic,
an asymptotic version with the said property can be extracted.

2. Asymptotic Versions of Operators

Definition 8. Let T ∈ L(X). Define T̃ , an asymptotic version of T , to be
a formally diagonal operator between asymptotic versions Ỹ , Z̃ ∈ {X̃}∞, such
that for every n ∈ N and every ε > 0, the following set is asymptotic:

All sequences in S(X)n
<, which are (1+ ε)-equivalent to the basis of [Ỹ ]n, and

whose images under T are (1 + ε)-equivalent to the images of the basis of [Ỹ ]n
under T̃ .

A collection of such asymptotic sets, for arbitrarily small ε’s and arbitrarily
large n’s will be referred to as asymptotic sets realizing the asymptotic version T̃ .

The set of all asymptotic versions of an operator T will be denoted {T}∞.

Note that the asymptotic versions of the identity operator correspond simply to
asymptotic versions of the space.

We are about to prove the basic existence theorem for asymptotic versions of
operators. In order to formulate it, we need the following technical terminology.

Definition 9. A truncation (of length k) of a given collection, Σ ⊆ S(X)n
<, is

the collection of sequences of the leading k blocks from all sequences in Σ.

A truncation of an asymptotic set is obviously asymptotic.

Theorem 10 (The existence theorem). Let X be a space with a shrinking
basis. For every operator T ∈ L(X) and every sequence {Φn}∞n=1 of increasingly
long asymptotic sets, there exists T̃ ∈ {T}∞ realized by truncated subsets of
the Φn’s.

Before we prove the theorem, let us isolate the part of the proof which requires
a shrinking basis.
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Lemma 11. Let X be a space with a shrinking basis, and let T ∈ L(X). Let Σ

be an admission set . The collection of all sequences, which T maps ε-close to
sequences from Σ, is also an admission set .

Proof. As a first step we have to verify that, if a block is supported far enough,
its image under T will be — up to an ε/2-perturbation— the first block of some
sequence from Σ. This sounds reasonable, recalling that Σ is an admission set,
and so any block which is supported sufficiently far can play the first vector of
a sequence from Σ.

To verify, let [X]>n1 be the first step in the winning strategy of player S
for Σ. We know that all blocks x1 supported far enough have ‖Pn1(T (x1))‖ <

ε/2. Indeed, if this weren’t the case, we would have ‖Pn1(T (xk
1))‖ ≥ ε/2 for a

sequence {xk
1}∞k=1 of normalised vectors supported increasingly far (and hence

weakly null). This would imply that one of the bounded functionals P{ei}(T (x)),
1 ≤ i ≤ n1, does not go to zero when applied to a sequence of weakly null
vectors—a contradiction. Therefore, as long as x1 is supported far enough,
T (x1) fits (up to ε/2) as the first vector from a sequence in Σ. The first step is
accomplished.

Let now [X]>n2 be the second step in the winning strategy of player S for
Σ, given that player V has just chosen the appropriate perturbation of T (x1).
The above reasoning shows that if x2 is supported far enough, it’s image under
T will be supported (up to an ε/4 perturbation) after n2, that is, far enough
to fit as the second vector of a sequence from Σ, which begins with our slight
perturbation of T (x1).

Repeating this argument we see, that if a sequence of vectors is sufficiently
spread out (each vector is supported sufficiently far with respect to its predeces-
sors), the image of that sequence will be a sequence of essentially consecutive
vectors, ε-close to a sequence from Σ. We have thus proved that our collection
is indeed an admission collection, and we’re through. ¤

Remark 12. In the proof we will apply the last Lemma to the collection of
close realizations of asymptotic spaces in X. The paper [MMiT] explains that
the collection Σn,ε(X) of all block sequences of length n, which are (1 + ε)-
equivalent to asymptotic spaces, is indeed an admission set (we will point out a
proof for this claim in Remark 13 below).

Proof of the existence theorem. The proof will split into three parts.
First we have to make sure that we can restrict T to operate between asymp-
totic spaces. To do this we will extract from the Φn’s asymptotic subsets of
block sequences, whose normalised images under T are closely equivalent to as-
ymptotic spaces of X (this is where we use the last Lemma and the shrinking
property). Then we will use a compactness argument and Lemma 4 to extract
asymptotic subsets of block sequences, where the norm of linear combinations,
the normalised image under T and the action of T are almost fixed. Finally we
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will pipe such asymptotic sets of different lengths together by means of Lemma 7,
to realize an asymptotic version of T .

First step: For every δ > 0 and for every asymptotic set Ψ of length n, there
is an asymptotic subset, Ψ′, of sequences whose normalised images under T are
(1 + δ)-equivalent to elements of {X}n.

Proof of first step: We want to show that the following subset of Ψ is asymptotic:

The intersection of Ψ with the collection of block sequences which T maps
(up to δ/2) into the admission collection Σn, δ/2(X) from Remark 12.

Ψ is already an asymptotic set. By the Lemma 11, the sequences mapped close
to Σn, δ/2(X) form an admission set. Remark 2 says that their intersection must
indeed be an asymptotic set.

Second step: Let M be the compactum of n-dimensional spaces with a normalised
basis and a basic constant not worse than that of X (the metric on this space is
given by equivalence of bases). Consider a finite covering {Vi}i of M . Consider
a finite covering {Ik}k of the cube [0, ‖T‖]n. For every asymptotic set Φ of
length n there is an asymptotic subset, Φ′, of block-sequences with the following
additional properties:

(i) The sequences in Φ′ are contained in some fixed Vi0 .
(ii) The normalised images under T of sequences from Φ′ are contained in some

fixed Wj0 .
(iii) For all {xi}n

i=1 ∈ Φ′, the sequences {‖T (xi)‖}n
i=1 are contained in some

fixed Ik0 .

Proof of second step: This is an easy application of Lemma 4 and the fact that
the covering is finite. Our covering induces a covering of M × M × [0, ‖T‖]n.
Each cell of this covering contains a subset of Φ of the form

Φi,j,k =

{
{xi}n

i=1 : {xi}n
i=1 ∈ Vi,

{
T (xi)
‖T (xi)‖

}n

i=1

∈ Wj , {‖T (xi)‖}n
i=1 ∈ Ik

}
.

By Lemma 4 one of those collections must be an asymptotic set.

Third step: For every operator T ∈ L(X) and every collection {Φn}∞n=1 of as-
ymptotic sets of increasing lengths, there exists a formally diagonal operator
T̃ ∈ {T}∞, realized by truncated subsets of the Φn’s.

Proof of third step: Fix a positive sequence converging to zero, {εn}n. Next
choose inductively open finite coverings as in step 2 above with cells of diameter
less than εn. Our aim is that the cells of the coverings correspond to the vertices
of a tree; we want a cell from the (n− 1)-th covering to “split” into cells of the
n-th covcering. To achieve that, we consider the projection from the n-order
space to the (n− 1)-order space that takes (x1, . . . , xn; y1, . . . , yn;λ1, . . . , λn) to
(x1, . . . , xn−1; y1, . . . , yn−1; λ1, . . . , λn−1). We require that this projection maps
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the covering of the n-order space to a refinement of the covering of the (n− 1)-
order space.

If we choose ε1 large enough (say ε1 = ‖T‖), The cells of such coverings do
form an infinite rooted tree in an obvious way.

Take the collection {Φn}n of asymptotic sets. Fix k ≤ n. Applying step 2
to the k-truncation of Φn, we get that there’s a vertex (i.e. a covering cell)
which contains an asymptotic subset of the k-truncation of Φn. Note that if a
certain vertex contains such an asymptotic subset, so must all the predecessors
of that vertex (a truncation of an asymptotic set is an asymptotic set). This fact
means that the vertices containing such asymptotic sets form a connected rooted
subtree. Since k and n were arbitrary, our rooted subtree intersects every level
of the original tree. We therefore have that our subtree satisfies both properties
of Lemma 7, and must have an infinite branch.

Let {Φ′m}m be the truncated asymptotic subsets contained in the vertices
of such an infinite branch. By step 1, we may assume that T sends sequences
from Φ′m to increasingly good realizations of asymptotic spaces of X. Thus, for
every m, the truncated asymptotic subsets {Φ′m}m of {Φn}n have the following
properties:

(i) The sequences of blocks from {Φ′m}m are (1 + εm)-equivalent to the basis of
[Y ]m for some fixed Y ∈ {X}∞.

(ii) The normalised images under T of all sequences in {Φ′m}m are (1 + εm)-
equivalent to the basis of [Z]m for some fixed Z ∈ {X}∞.

(iii) For any (xi)i ∈ {Φ′m}m, the sequence ‖T (xi)‖i is fixed up to εm.

Hence, the result of this process is a sequence of asymptotic sets realizing a
formally diagonal asymptotic version of T . ¤
Remark 13. Note that since we may start with any collection of asymptotic
sets with increasing lengths, we may choose to extract our asymptotic version of
T from asymptotic sets realizing a given asymptotic version of X. We thus have
for any operator T ∈ L(X) and for any X̃ ∈ {X}∞ an asymptotic version of T

whose domain is X̃.
The proof of the existence theorem also implies that for every positive ε and

natural n the collection Σn,ε(X) (introduced in Remark 12 and used in the proof
of step 1) is indeed an admission set.

If this were not the case, by Lemma 3 the complement of Σn,ε(X) would be an
asymptotic set, and by its own definition it could not contain sequences (1 + ε)-
equivalent to any n-dimensional asymptotic space. Then, using the proof of the
existence theorem for the identity operator (this does not require the first step
of the proof or the assumption that Σn,ε(X) is an admission set), we extract
asymptotic subsets realizing some fixed space. This space must (by definition)
be asymptotic —a contradiction.

The same fact was proved in [MMiT, 1.5], by a different compactness argu-
ment.
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3. Asymptotic Versions of Operator Ideals

3.1. Compact operators.

Proposition 14. If T is compact then {T}∞ = {0}. If T is not compact then
{T}∞ contains a non-compact operator .

Proof. If T is compact, take asymptotic sets, {Φn}n, realizing some asymptotic
version of the operator. Let V play his winning strategy for Φn, and let S play
tail subspaces [X]>n with n such that ‖T‖[X]>n

< ε.
The block-sequence resulting from this game will still be an approximate real-

ization of the above asymptotic version. This shows that any asymptotic version
of T can be approximated arbitrarily well by operators with norm smaller than
any positive ε. Therefore the only asymptotic version of T is zero.

If T is not compact, there is an ε > 0 such that the set

Φ1 = {x ∈ S(X)1< : ‖T (x)‖ ≥ ε}
is asymptotic (of length 1). For any n the collection Φn of sequences of n

successive elements from Φ1 is obviously asymptotic.
Using the existence theorem, extract from Φn asymptotic subsets realizing

some asymptotic version of T . The norm of this asymptotic version will not be
smaller than ε on any element of the basis of its domain, and will therefore be
non-compact. ¤

Asymptotic versions induce a seminorm on operators, through the formula:

|||T ||| = sup ‖T̃‖
where the supremum is taken over all asymptotic versions of T and the double-
bar norm is the usual operator norm.

It is interesting to note that this gives a way of looking at the Calkin algebras
L(X)/K(X).

Proposition 15. Suppose X is a Banach space with a shrinking basis, where
the norm of all tail projections is exactly 1 (the last property can be achieved
by renorming , see [LTz]). Then the norm of the image of an operator T in the
Calkin algebra is equal to |||T |||.
Proof. One direction is clear. If K is a compact operator on X, the norm of
T + K is at least the supremum of norms of asymptotic versions of T + K. The
latter, by the proof of Proposition 14, are the same as asymptotic versions of T .

For the other direction we will show that for every T there exist compact
operators K such that the norm of T + K is almost achieved by asymptotic
versions of T + K, which, again, are the same as asymptotic versions of T .

We will perturb T by a compact operator K, such that the set Φ of normalised
blocks mapped by T +K to vectors of norm greater than ‖T +K‖−ε will become
an asymptotic set of length 1. We can then extract an asymptotic version of
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T + K from asymptotic sets containing only sequences of elements in Φ. Such
asymptotic versions will almost achieve the norm of T + K, as required.

Take λ to be (up to ε) the largest such that

{x ∈ S(X)1< : ‖T (x)‖ ≥ λ}
is asymptotic. By this we mean that the set

{x ∈ S(X)1< : ‖T (x)‖ ≥ λ + ε}
does not have elements in some tail subspace [X]>m. Consider T ′ = T −T ◦Pm,
which is a compact perturbation of T . By our assumption on the basis we have
‖T ′‖ ≤ λ + ε, and the set

{x ∈ S(X)1< : ‖T ′(x)‖ ≥ λ}
is still asymptotic. The proof is now complete. ¤

3.2. Uniformly singular and asymptotically uniformly singular opera-
tors.

Definition 16. An operator T on a sequence space X is asymptotically uni-
formly singular if for every ε there exist n(ε, T ) and an admission set Σn of length
n, such that any sequence in Σn contains a normalised vector, which T send ε-
close to zero. Informally we will say, that T has an almost kernel in any sequence
from Σn. T is called uniformly singular if it satisfies the above definition with
Σn = S(X)n

<.

In other words, an operator T is asymptotically uniformly singular, if , when
restricted to the span of a sequence from Σn, T−1 is either not defined or has
norm larger than 1/ε.

An operator ideal close to the ideal of uniformly singular operators was defined
in [Mi], and called σ0. The difference is that the original definition referred to
all n dimensional subspaces, rather than just block subspaces, as we read here.

Proposition 17. Operators on a Banach-space X, which are asymptotically
uniformly singular with respect to a given basis, form a Banach space with the
usual operator norm, and a two sided ideal of L(X).

Proof. Let T be asymptotically uniformly singular, and let S be bounded. ST

is obviously asymptotically uniformly singular. Indeed, n(ε, ST ) ≤ n(ε/‖S‖, T ),
and the admission sets for ST are the same as those for T .

To see that TS is asymptotically uniformly singular we use Lemma 11, and
find admission sets Σ′, whose normalised image under S are essentially contained
in the admission sets Σ used in the definition of asymptotic uniform singular-
ity for the operator T . TS will take some normalised block from the span of
any sequence from Σ′ to a vector with arbitrarily small norm. Indeed, S takes
(essentially) Σ′ to Σ, where T has an “almost kernel”.
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To show that the sum of two asymptotically uniformly singular operators is
also asymptotically uniformly singular, we need to use the following claim:

If T is asymptotically uniformly singular, then for every ε and every k there
exists an N(k, ε, T ), and an admission set Σ of length N , such that every
sequence from Σ has a k-dimensional block subspace on which T has norm
less than ε.

This claim is standardly proved by taking concatenations of the asymptotic sets
from the definition of asymptotic uniform singularity for T . It is easier to think
here of the uniformly singular case. Suppose T sends some normalised vector
from any nε-dimensional block subspace into an ε-neighbourhood of zero. Then
in any

∑k
i=1 nεi

-dimensional block subspace there is a k-dimensional block sub-
space, on which the norm of T is at most C

∑k
i=1 εi (where C is the basic constant

of X).
To complete the proof of the proposition, fix ε > 0 and consider asymptoti-

cally uniformly singular operators, T and S. From the definition of asymptotic
uniform singularity produce an admission set Σ, of length n(ε/2, S), such that
S takes some normalised block in the span of any Σ-admissible sequence to a
vector with norm less than ε/2. Take the admission set Ψ of length N(n, ε/2, T )
from the above claim. It is possible to extract an admission subset Ψ′ ⊆ Ψ,
such that any n consecutive blocks of a sequence in Ψ′ are also in Σ (similarly
to Remark 2).

We therefore have that in any block sequence in Ψ′ there is an n-dimensional
block subspace where T has norm less than ε/2. This subspace must be essen-
tially the span of a sequence from Σ, so it contains a normalised vector, whose
image under S has norm less than ε/2. This means that T + S sends this vector
ε-close to zero, and hence T + S is asymptotically uniformly singular.

The fact that asymptotically uniformly singular operators form a closed sub-
space of L(X) is straightforward. ¤

Remarks 18. (i) Every asymptotically uniformly singular operator T is actually
uniformly singular on some block subspace.

Indeed, From Gowers’ combinatorial lemma (in [G], see also [W1]) it follows
that there is a block subspace Y , where Σn(ε,T ) = S(Y )n(ε,T )

< .
In a diagonal subspace we can find an n for every ε, such that any sequence

of the form en < x1 < . . . < xn has a normalised block whose image under T

has norm less than ε.
It is easy to see that on this block subspace T is uniformly singular; indeed,

every sequence of n blocks contains a sequence of [n/2] blocks supported after
the [n/2]-th basic element.

(ii) It is not true, however, that the ideals of asymptotically uniformly singular
and uniformly singular operators coincide.
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Consider the following example: Let X be the `2 sum of increasingly long `n
2 ’s,

and let Y be their `3 sum. The formal identity from X to Y is not uniformly
singular, but is asymptotically uniformly singular.

(iii) It is easy to extend Proposition 17 and show that asymptotically uniformly
singular operators form a two sided operator ideal with the operator norm, when
restricting our attention to the category of Banach spaces with shrinking bases.
Uniformly singular operators will only form a left-sided ideal in the (shrinking)
basis context. This is because a bounded operator multiplied to the right of a
uniformly singular operator does not have to preserve blocks.

(iv) It is worth noting that in the Gowers-Maurey space (from [GM]), all opera-
tors are in fact uniformly singular perturbations of a scalar operator (this follows
from Lemma 22 and Lemma 3 in [GM]). This point is even more interesting in
light of Corollary 21 below, and the Remark which follows it.

The following proposition claims a strong dichotomy in the asymptotic struc-
ture of operators: either it contains an isomorphism, or it is composed only of
uniformly singular operators.

Proposition 19. If T is an asymptotically uniformly singular operator then all
operators in {T}∞ are uniformly singular . If T is not asymptotically uniformly
singular , {T}∞ contains an isomorphism.

Proof. Let T be asymptotically uniformly singular. Take asymptotic sets Φn

realizing an asymptotic version of T . Let player V play the winning strategy
for Φn, while S plays the winning strategy for the admission sets Σn from the
definition of asymptotic uniform singularity for T . The resulting vector sequences
must approximately realize the above asymptotic version, but must also contain
an “almost kernel” for T .

Keeping in mind that a restriction of an asymptotic version to a block subspace
is still an asymptotic version, we conclude that T has an “almost kernel” on every
block subspace of the appropriate dimension. Therefore any asymptotic version
of T is uniformly singular.

Suppose T is not asymptotically uniformly singular. Then for some ε > 0
the sets Φn of all sequences in S(X)n

<, on which T is an isomorphism with
‖T−1‖ ≤ 1/ε, are asymptotic. Indeed, if they weren’t, by Lemma 3, for some ε

and for every n, Φc
n would be admission sets, and then T would be asymptoti-

cally uniformly singular, in contradiction. Using the existence theorem, extract
from Φn asymptotic subsets Φ′n, which realize an asymptotic version of T . This
asymptotic version is an isomorphism. ¤

Remark 20. Note that the proof shows that if T is asymptotically uniformly
singular, all its asymptotic versions will be uniformly singular operators with the
same n(ε) as T .
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We offer here an application of the theory developed above. Recall that an
asymptotic `p space is a space, all whose asymptotic versions are isomorphic
to `p.

Corollary 21. Every asymptotically uniformly singular operator from an as-
ymptotic `p space X to itself is compact .

Proof. Consider the set AUS(X) ⊂ L(X) of asymptotically uniformly singu-
lar operators. The asymptotic versions of these operators, by Proposition 19
above, are all uniformly singular operators in L(`p). In particular they are all
asymptotically uniformly singular, and therefore belong to some proper closed
two-sided ideal. It is well known [GoMaF] that the only proper closed two sided
operator ideal in L(`p) is the ideal of compact operators, but let us sketch a very
simple proof for this particular context:

All asymptotic versions of T are diagonal uniformly singular operators in
L(`p). It is clear then, that given any ε > 0, only finitely many entries on the
diagonal are larger than ε; otherwise, restricting to the span of the basic elements
corresponding to the entries larger than ε we get an isomorphism. Therefore the
entries on the diagonal go to zero, and the operator is compact.

We can now complete the proof of the corollary, using Proposition 14 once
more.

AUS(X) = {T ∈ L(X) : {T}∞ ⊆ US(`p)}
= {T ∈ L(X) : {T}∞ ⊆ K(`p)} = K(X).

where K(Z) is the set of all compact operators on Z, and US(Z) is the set of all
uniformly singular operators on Z. ¤

Remark 22. Note that, by this corollary, if an asymptotic-`p space with a
shrinking basis has the property of the Gowers-Maurey space from the last point
of Remark 18, then all bounded linear operators on this space will be compact
perturbations of scalar operators. Whether such a space exists is an important
open question.

3.3. A general theorem. We conclude with a theorem which explains that
the above instances form part of a more general phenomenon. When referring
to an operator ideal we invoke the categorical algebraic definition from [P]. An
injective operator ideal J has the property that if T : X → Y is in J , then the
same operator with a revised range, T : X → Im(T ), is also in J . The following
theorem states that the “asymptotic preimage” in L(X) of an injective ideal is
itself an ideal in the algebra L(X). The preimage may be trivial, but previous
examples show this needn’t be the case.

Theorem 23. Let J be an injective operator ideal , and let X be a space with
a shrinking basis. The set of operators J ′ = {T ∈ L(X) : {T}∞ ⊆ J} is an
operator ideal in L(X).
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Proof. If we multiply an operator S ∈ J ′ with an operator T ∈ L(X), an as-
ymptotic version of the product will always be a product of asymptotic versions.

Indeed, take the asymptotic sets realizing an asymptotic version, R̃, of R = ST

(or R = TS). Extract by the existence theorem asymptotic subsets, which realize
an asymptotic version T̃ of T . Recall that the set of sequences which approxi-
mately realize asymptotic versions of S is an admission set (consult Remark 13).
Thus Lemma 11 and the proof of the existence theorem allow to extract asymp-
totic subsets of sequences whose normalised images under T realize an asymptotic
version S̃ of S. The product of these asymptotic versions, S̃T̃ ∈ J , is realized
by the same asymptotic subsets as well. But these asymptotic subsets must still
realize R̃. Therefore R̃ ∈ J , and R must be in J ′.

Let T and S be in J ′. Let R = S + T , and find asymptotic sets realizing
R̃, an asymptotic version of R. Extract asymptotic subsets realizing asymptotic
versions of S and T , S̃ and T̃ respectively. Note that we cannot say that R̃ =
S̃ + T̃ ; in fact S̃ and T̃ may even have different ranges. However, we trivially
have ∥∥R̃(x)

∥∥ ≤
∥∥S̃(x)

∥∥ +
∥∥T̃ (x)

∥∥. (3.1)

This is enough in order to prove R̃ ∈ J . Indeed, we can write

R̃ = P ◦ (i1 ◦ S̃ + i2 ◦ T̃ ),

where

R̃ : X̃ → W̃ , S̃ : X̃ → Ỹ , T̃ : X̃ → Z̃,

i1 : Ỹ → Ỹ ⊕ Z̃, i2 : Z̃ → Ỹ ⊕ Z̃,

i1(y) = (y, 0), i2(z) = (0, z),

and P : Im(i1◦S̃+i2◦T̃ ) → W̃ is defined by the equation P
(
(i1◦S̃+i2◦T̃ )(x)

)
=

R̃(x), and extended by continuity. Inequality (3.1) assures that P is well defined
and continuous.

Now T̃ and S̃ are in J , so i1 ◦ S̃ + i2 ◦ T̃ is also in J . By injectivity, we are
allowed to modify the range as we compose with P , and still maintain that the
result R̃ is in J . Thus R ∈ J ′, and we conclude that J ′ is an ideal in L(X). ¤
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