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Harmonic Bergman Spaces

KAREL STROETHOFF

Abstract. We present a simple derivation of the explicit formula for the

harmonic Bergman reproducing kernel on the ball in euclidean space and

give an elementary proof that the harmonic Bergman projection is Lp-

bounded, for 1 < p <∞. We furthermore discuss duality results.

1. Introduction

Throughout the paper n is a positive integer greater than 1. We will be

working with functions defined on all or part of R
n. Let Dj denote the partial

derivative with respect to the j-th coordinate variable. Recall that ∇u(x) =

(D1u(x), · · · ,Dnu(x)). The Laplacian of u is ∆u(x) = D2
1u(x) + · · · +D2

nu(x).

A real- or complex-valued function u is harmonic on an open subset Ω of R
n

if ∆u ≡ 0 on Ω. The purpose of this article is to present an elementary treat-

ment of some known results for the harmonic Bergman spaces consisting of all

harmonic functions on the unit ball in R
n that are p-integrable with respect to

volume measure. Several properties of these spaces are analogous to those of the

Bergman spaces of analytic functions on the unit ball in C
n. As in the analytic

case, there is a reproducing kernel and associated projection. Duality results

follow once we know that the projection is Lp-bounded. Coifman and Rochberg

[1980] used deep results from harmonic analysis to establish Lp-boundedness of

the harmonic Bergman projection.

An explicit formula for the harmonic Bergman reproducing kernel has only

been determined recently; see [Axler et al. 1992]. We give a simple derivation for

such a formula in Section 2. In Section 3 we give an elementary proof that the

harmonic Bergman projection is Lp-bounded for 1 < p <∞. Our proof is similar

to Forelli and Rudin’s proof of Lp-boundedness of the analytic Bergman projec-

tion [Forelli and Rudin 1974/75; Rudin 1980], but as in Axler’s argument [1988]
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in the context of the analytic Bergman spaces on the unit disk, we will avoid the

use of the binomial theorem, the gamma function and Stirling’s formula.

In Section 4 we discuss the dual and the predual of the Bergman space of

integrable harmonic functions on the unit ball in R
n. Analogous to the analytic

case, the dual and predual are identified with the harmonic Bloch and little Bloch

space, which are spaces of harmonic functions determined by growth conditions

on the gradient. As in the analytic case, these duality results follow from the

fact that the harmonic Bergman projection maps L∞ onto the harmonic Bloch

space.

The remainder of this section establishes some of the notation and contains

the prerequisites from harmonic function theory needed in the paper.

We will repeatedly make use of Green’s identity, which states that if Ω is a

bounded open subset of R
n with smooth boundary ∂Ω and u and v are contin-

uously twice-differentiable functions in an open set containing Ω̄, the closure of

Ω, then
∫

Ω

(u∆v − v∆u) dV =

∫

∂Ω

(uDnv − vDnu) ds, (1–1)

where V denotes volume measure on R
n, s denotes surface area measure on

∂Ω, and the symbol Dn denotes differentiation with respect to the outward unit

normal vector n: Dnw = ∇w · n. A special case of (1–1) is obtained by taking

v ≡ 1: if u is harmonic in an open neighborhood of Ω̄, then

∫

∂Ω

Dnu ds = 0. (1–2)

For y ∈ R
n and r > 0 we write B(y, r) = {x ∈ R

n : |x − y| < r} and B̄(y, r)

for its closure. We use B to denote the unit ball B(0, 1) and write S for its

boundary, the unit sphere S = {x ∈ R
n : |x| = 1}. The area of S is easily

determined: if we take Ω = B, u ≡ 1 and v(x) = |x|2 in (1–1), then ∆v ≡ 2n

and Dnv ≡ 2, and we obtain 2nV (B) = 2s(S); thus s(S) = nV (B). It will be

convenient to work with normalized surface area on S, which we denote by σ;

thus ds = nV (B) dσ on S and σ(S) = 1.

If u is harmonic on an open neighborhood of B̄(y, r), the chain rule gives

(d/dr)u(y + rζ) = ∇u(y + rζ) · ζ = Dnu(y + rζ), where the normal derviative

Dn is taken with respect to B(y, r), so that

d

dr

∫

S

u(y + rζ) dσ(ζ) =

∫

S

Dnu(y + rζ) dσ(ζ) = 0,

by (1–2). Hence
∫

S
u(y+ rζ) dσ(ζ) does not depend on r, so that the function u

satisfies the following so-called mean value property

∫

S

u(y + rζ) dσ(ζ) = u(y). (1–3)
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In particular, if u is harmonic on an open set containing B̄, we have

u(0) =

∫

S

u(ζ) dσ(ζ).

In fact, for any y ∈ B, u(y) is a weighted average of u over S, namely u(y) =
∫

S
u(ζ)P (ζ, y) dσ(ζ), where P (ζ, y) is the so called Poisson kernel for the ball

B. Since this Poisson kernel will in the sequel play a fundamental role, we will

derive an explicit formula for P .

Fix y ∈ B \ {0}, choose any 0 < r < 1 − |y|, and set

Ω = {x ∈ R
n : r < |x− y| < 1}.

We will only consider here the case n > 2. Put v(x) = |x − y|2−n. It is easy

to verify that v is harmonic on R
n \ {y} and ∇v(x) = (2 − n)|x − y|−n(x − y);

consequently, Dnv = (2−n)r1−n on ∂B(y, r). For ζ ∈ S it is easy to verify that

|ζ−y|2 = |y|2
∣

∣ζ−y/|y|2
∣

∣

2
; thus, on S the function v coincides with the function

w(x) = |y|2−n
∣

∣x− y/|y|2
∣

∣

2−n
. Using that w is harmonic on B̄, an application of

(1–1) yields
∫

S
uDnw ds =

∫

S
wDnu ds =

∫

S
vDnu ds. It follows that

∫

S

(uDnv − uDnw) ds =

∫

S

(uDnv − vDnu) ds.

By (1–1)
∫

S

(uDnv − vDnu) ds =

∫

∂B(y,r)

(uDnv − vDnu) ds

= (2 − n)r1−n

∫

∂B(y,r)

u ds = (2 − n)nV (B)u(y).

We conclude that u(y) =
∫

S
uPy dσ, where Py = (2 − n)−1(Dnv − Dnw). A

simple calculation shows that Py(ζ) = P (ζ, y) is given by the formula

P (ζ, y) =
1 − |y|2

|ζ − y|n
.

In particular we have

∫

S

1 − |y|2

|y − ζ|n
dσ(ζ) = 1 for y ∈ B. (1–4)

We extend the Poisson kernel P to a function on B × B as follows: if x, y ∈ B,

then we set P (x, y) = P (x/|x|, |x|y). This is called the extended Poisson kernel.

Thus

P (x, y) =
1 − |x|2|y|2

(1 − 2x · y + |x|2|y|2)n/2
for x, y ∈ B.

For each fixed y ∈ B the function x 7→ P (x, y) is harmonic, and by symmetry,

for each fixed x ∈ B the function y 7→ P (x, y) is harmonic.
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It will be convenient to use polar coordinates to integrate functions over balls.

Heuristically, we have

d

dr

∫

B(0,r)

f(x) dV (x) =

∫

rS

f ds,

and because the sphere rS has area nV (B)rn−1 this is equal to

nV (B)rn−1

∫

S

f(rζ) dσ(ζ).

Integrating with respect to r we obtain the following formula
∫

B(0,ρ)

f(x) dV (x) = nV (B)

∫ ρ

0

rn−1

∫

S

f(rζ) dσ(ζ) dr. (1–5)

If u is harmonic on B, then we define its radial derivative Ru by Ru(x) =

∇u(x) ·x. It is easy to verify that Ru is also harmonic on B. In fact, this follows

at once from the formula ∆(Ru) = 2∆u+ R(∆u), which is easy to verify.

The reader interested in learning more harmonic function theory should con-

sult [Axler et al. 1992].

2. The Harmonic Bergman Spaces

For 1 ≤ p < ∞ we denote by bp(B) the set of all harmonic functions u on B

for which

‖u‖p =

(
∫

B

|u(x)|p dV (x)

)1/p

<∞.

The spaces bp(B) are called harmonic Bergman spaces. The space b2(B) is a

linear subspace of L2(B) with inner product given by

〈f, g〉 =

∫

B

f(x)g(x) dV (x) for f, g ∈ L2(B).

If u is harmonic on B and y ∈ B is fixed, it follows from (1–3) and Cauchy-

Schwarz’s inequality that |u(y)|2 ≤
∫

S
|u(y + rζ)|2 dσ(ζ) for 0 < r < 1 − |y|.

Applying (1–5) to the function f(x) = |u(y + x)|2 with ρ = 1 − |y| we see that

nV (B)

∫ ρ

0

rn−1

∫

S

|u(y + rζ)|2 dσ(ζ) dr =

∫

B(y,ρ)

|u|2 dV ≤ ‖u‖2
2
,

and conclude that

|u(y)| ≤
1

V (B)1/2(1 − |y|)n/2
‖u‖2 for u ∈ b2(B). (2–1)

It follows from (2–1) that b2(B) is a closed subspace of L2(B), and thus it is

a Hilbert space. Inequality (2–1) implies that for each fixed y ∈ B the linear

functional u 7→ u(y) is bounded. By the Riesz representation theorem there is a

unique function Ry ∈ b2(B), called the reproducing kernel at y, such that u(y) =

〈u,Ry〉, for all u ∈ b2(B). By considering real and imaginary parts, it is easily
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seen that the function reproducing the value at y for the real Bergman space,

also reproduces the value at y for complex-valued functions of b2(B), and thus

(by uniqueness) we conclude that Ry is real-valued. We write R(x, y) = Ry(x),

and call this the Bergman reproducing kernel of b2(B). Because the Bergman

reproducing kernel is real–valued we have R(y, x) = 〈Rx, Ry〉 = 〈Ry, Rx〉 =

Ry(x) = R(x, y), for all x, y ∈ B. Thus R is a symmetric function on B ×B.

The Bergman kernel for the ball. In this subsection we will derive an explicit

formula for the Bergman kernel R of B. We will not make use of so-called zonal

and spherical harmonics used in [Axler et al. 1992] to calculate the Bergman

kernel R, but instead use Green’s identity to relate R to the extended Poisson

kernel P .

Suppose u is harmonic on B̄ and fix y ∈ B. Let v also be harmonic on B̄, and

define the function w by w(x) = (|x|2 − 1)v(x) = |x|2v(x) − v(x). Observe that

the function ∆w is harmonic on B̄, for

∆w(x) = ∆(|x|2) v(x) + 2∇|x|2 · ∇v(x) + |x|2∆v(x)

= 2nv(x) + 4x · ∇v(x) = 2nv(x) + 4Rv(x). (2–2)

Note that ∇w(x) = 2v(x)x+(|x|2−1)∇v(x), so that Dnw(x) = ∇w(x) ·x/|x| =

2v(x) |x|+ (|x|2 − 1)Dnv(x). In particular, Dnw ≡ 2v on S. Since ∆u ≡ 0 on B

and w ≡ 0 on S, it follows from (1–1) (applied to u and w) that
∫

B

u∆w dV =

∫

S

uDnw ds = 2

∫

S

uv ds = 2nV (B)

∫

S

uv dσ. (2–3)

It is clear that our choice for v should be the extended Poisson kernel: v(x) =

P (x, y) for x ∈ B. Then
∫

B

u∆w dV = 2nV (B)

∫

S

u(ζ)P (ζ, y) dσ(ζ) = 2nV (B)u(y).

We conclude that the harmonic function ∆w/(2nV (B)) is the reproducing kernel

at y. Using (2–2) we obtain the following formula for the Bergman kernel

R(x, y) =
1

nV (B)
(nP (x, y) + 2x · ∇xP (x, y)). (2–4)

By elementary calculus, we get the formula

R(x, y) =
1

nV (B)(1 − 2x · y + |x|2|y|2)n/2

(

n(1 − |x|2|y|2)2

1 − 2x · y + |x|2|y|2
− 4|x|2|y|2

)

.

(2–5)

In the next section we will need an estimate on |R(x, y)|. By Cauchy-Schwarz

x·y ≤ |x||y|. It follows that (1−|x||y|)2 = 1+|x|2|y|2−2|x||y| ≤ 1−2x·y+|x|2|y|2,

and thus (1 − |x|2|y|2)2 = (1 + |x||y|)2(1 − |x||y|)2 ≤ 4(1 − 2x · y + |x|2|y|2).

Therefore we have

|R(x, y)| ≤
4

V (B)(1 − 2x · y + |x|2|y|2)n/2
. (2–6)
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3. Lp-Boundedness of the Bergman Projection and Duality

LetQ denote the orthogonal projection of L2(B) onto b2(B). If f ∈ L2(B) and

y ∈ B, then Q[f ](y) = 〈Qf,Ry〉 = 〈f,Ry〉 and we have the following formula:

Q[f ](y) =

∫

B

R(x, y) f(x) dV (x). (3–1)

For fixed y ∈ B the function R(·, y) is bounded, so that we can use the formula

above for Q[f ] to extend the domain of Q to Lp(B), where 1 ≤ p <∞. Our goal

is to prove the following theorem.

Theorem 3.1. Let 1 < p <∞. Then Q maps Lp(B) boundedly onto bp(B).

Proof. We will use the so-called Schur Test. Specifically, we will show the

existence of a positive function h and a constant C such that
∫

B

h(x)q |R(x, y)| dV (x)≤Ch(y)q for all y ∈ B, and (3–2)

∫

B

h(y)p |R(x, y)| dV (y)≤Ch(x)p for all x ∈ B, (3–3)

where q denotes the conjugate index of p, that is, q = p/(p − 1). That this

will imply the result is then proved as follows. Given f ∈ Lp(B, dV ), applying

Hölder’s inequality and (3–2) we have

|Q[f ](y)| ≤

∫

B

|f(x)|

h(x)
h(x) |R(x, y)| dV (x)

≤

(
∫

B

|f(x)|p

h(x)p
|R(x, y)| dV (x)

)1/p (∫

B

h(x)q |R(x, y)| dV (x)

)1/q

≤ C1/qh(y)

(
∫

B

|f(x)|p

h(x)p
|R(x, y)| dV (x)

)1/p

.

Thus, applying Fubini’s theorem to reverse the order of integration, and using

(3–3) we obtain
∫

B

|Q[f ](y)|p dV (y) ≤ Cp/q

∫

B

h(y)p

(
∫

B

|f(x)|p

h(x)p
|R(x, y)| dV (x)

)

dV (y)

= Cp/q

∫

B

|f(x)|p

h(x)p

(
∫

B

h(y)p |R(x, y)| dV (y)

)

dV (x)

≤ Cp/q

∫

B

|f(x)|p

h(x)p
(Ch(x)p) dV (x) = Cp

∫

B

|f(x)|p dV (x),

proving the theorem.

We claim that the function h(x) = (1 − |x|2)−1/(pq) works, that is, satisfies

(3–2) and (3–3). By symmetry in p and q, it will suffice to find a constant Cp

for which
∫

B

(1 − |x|2)−1/p|R(x, y)| dV (y) ≤ Cp(1 − |y|2)−1/p for all y ∈ B. (3–4)
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Fix y ∈ B\{0}. For 0 < r < 1 and ζ ∈ S it follows from (2–6) that

|R(rζ, y)| ≤
4

V (B)

1

(1 − ry · ζ + r2|y|2)n/2
=

4

V (B)

1

|ζ − ry|n
.

Using (1–5) and (1–4) we have

∫

B

|R(x, y)|

(1 − |x|2)1/p
dV (x) = nV (B)

∫ 1

0

rn−1(1 − r2)−1/p

∫

S

|R(rζ, y)| dσ(ζ) dr

≤ 4n

∫ 1

0

rn−1(1 − r2)−1/p

∫

S

1

|ζ − ry|n
dσ(ζ) dr

≤ 2n

∫ 1

0

2r(1 − r2)−1/p 1

1 − r2|y|2
dr

= 2n

∫ 1

0

(1 − t)−1/p(1 − t|y|2)−1 dt.

Now

∫ |y|2

0

(1 − t)−1/p(1 − t|y|2)−1 dt ≤

∫ |y|2

0

(1 − t)−1−1/p dt ≤ p(1 − |y|2)−1/p.

Also (recall that 1 − 1/p = 1/q)

∫ 1

|y|2
(1 − t)−1/p(1 − t|y|2)−1 dt ≤ (1 − |y|2)−1

∫ 1

|y|2
(1 − t)−1/p dt

= (1 − |y|2)−1q(1 − |y|2)1−1/p = q(1 − |y|2)−1/p.

Addition yields

∫ 1

0

(1 − t)−1/p(1 − t|y|2)−1 dt ≤ (p+ q)(1 − |y|2)−1/p.

Thus (3–4) is proved with Cp = 2n(p + q). This concludes the proof of the

Lp-boundedness of Q. In fact, from the Schur Test, the estimates above and the

observation that Cq = Cp, we obtain the following bound on the norm of Q as

an operator from Lp(B) onto bp(B): ‖Q‖ ≤ 2np2/(p− 1). ˜

Remark 1. The norm estimate given above is far from being sharp; it can

be improved by estimating the integrals using binomial series, as in [Forelli and

Rudin 1974/75; Rudin 1980].

Remark 2. As we will see in the next section, Theorem 3.1 does not hold for

p = 1 or p = ∞.
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Duality. It is a consequence of the Lp-boundedness of the Bergman projection

that the spaces bp(B) and bq(B) are dual to each other: if v ∈ bq(B), then

the function ϕ defined by ϕ(u) = 〈u, v〉 (u ∈ bp(B)) defines a bounded linear

functional on bp(B), and every bounded linear functional on bp(B) is of the form

above. To prove the latter statement, suppose that ϕ ∈ bp(B)∗. By the Hahn-

Banach theorem, ϕ extends to a bounded linear functional ψ on Lp(B). There

exists a g ∈ Lq(B) such that ψ(f) = 〈f, g〉 for all f ∈ Lp(B). In particular, if

u ∈ bp(B), then ϕ(u) = 〈u, g〉. Note that v = Q[g] ∈ Q(Lq(B)) = bq(B). Using

Fubini’s theorem to reverse the order of integration it can then be shown that

〈u, v〉 = 〈u, g〉, and we obtain that ϕ(u) = 〈u, v〉, for all u ∈ bp(B).

4. The Bloch Space and the Dual of b1(B)

A harmonic function u on B is said to be a Bloch function if

‖u‖B = sup
x∈B

(1 − |x|2)|∇u(x)| <∞.

The harmonic Bloch space B is the set of all harmonic Bloch functions on B.

We will show that B is the dual of the Bergman space b1(B). We will first prove

that B = Q[L∞(B)]. The hard part of the proof will be to show that each

function u ∈ B is of the form u = Q[g], where g is a bounded function on B. If

u ∈ B, then it follows from the inequality |Ru(x)| ≤ |∇u(x)| that the function

(1 − |x|2)Ru is bounded on B. Thus we will try to relate Q[(1 − |x|2)Ru] to u.

We will first find an expression for Q[(1 − |x|2)u]. Combining (2–4) and (3–1)

we have

nV (B)Q[(1 − |x|2)u](y) = 2
〈

(1 − |x|2)u, RPy

〉

+ n
〈

(1 − |x|2)u, Py

〉

.

To rewrite
〈

(1− |x|2)u, RPy

〉

we use the same idea as the derivation of formula

(2–4): assuming u to be harmonic on an open set containing B̄, apply identity

(1–1) with u and v(x) = (1− |x|2)2P (x, y). The outward normal derivative Dnv

is 0 on S; thus (1–1) gives us
∫

B

u(x)∆x

(

(1 − |x|2)2P (x, y)
)

dV (x) = 0. (4–1)

It is easily verified that

∆x

(

(1−|x|2)2P (x, y)
)

= 8|x|2P (x, y)+4n(|x|2−1)P (x, y)+8(|x|2−1)RxP (x, y).

Thus (4–1) shows that
∫

B

|x|2u(x)P (x, y) dV (x)

= 1
2n

∫

B

u(x)(1 − |x|2)P (x, y) dV (x) +

∫

B

u(x)(1 − |x|2) RxP (x, y) dV (x),
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and using (3–1) and (2–4) we can write the equation above as
∫

B

|x|2u(x)P (x, y) dV (x) = 1
2nV (B)Q[(1 − |x|2)u](y). (4–2)

It follows from (1–1) that
∫

S
u(rζ)Dnv(rζ) dσ(ζ) =

∫

S
Dnu(rζ)v(rζ) dσ(ζ) for

harmonic functions u and v on B and 0 < r < 1. Multiplication by nV (B)rn+1

and integration over r yields the formula
∫

B

|x|2u(x)Rv(x) dV (x) =

∫

B

|x|2Ru(x)v(x) dV (x). (4–3)

Applying (4–2) to the function Ru, and making use of (4–3), we also have
∫

B

|x|2u(x)RxP (x, y) dV (x) = 1
2nV (B)Q[(1 − |x|2)Ru](y). (4–4)

Combining (4–2), (4–4) and (2–4) we arrive at

Q[|x|2u](y) = 1
2nQ[(1 − |x|2)u](y) +Q[(1 − |x|2)Ru](y),

and, writing u = Q[(1−|x|2)u]+Q[|x|2u] we obtain the formula in the following

theorem.

Theorem 4.1. If u ∈ B, then

u = Q[(1 − |x|2)Ru+ ( 1
2n+ 1)(1 − |x|2)u]. (4–5)

Proof. We have shown the stated result for u harmonic on an open set con-

taining B̄. To get the result for general u ∈ B, let 0 < r < 1 and consider

the dilate ur of u, defined by ur(x) = u(rx), x ∈ B. Since ur is harmonic on

the set {x ∈ R
n : |x| < 1/r}, equation (4–5) holds for ur. It is easily seen that

(Ru)r = Rur. We leave it as an exercise to show that (1−|x|2)Rur → (1−|x|2)Ru

and (1 − |x|2)ur → (1 − |x|2)u in L2(B) as r → 1−. The boundedness of Q

and the continuity of point evaluation at y imply that Q[(1 − |x|2)Rur](y) →

Q[(1 − |x|2)Ru](y) and Q[(1 − |x|2)ur](y) → Q[(1 − |x|2)u](y) as r → 1−, and

since ur(y) → u(y) formula (4–5) follows. ˜

Corollary 4.2. B = Q[L∞(B)].

Proof. If g ∈ L∞(B), and u = Q[g], then we claim that u ∈ B. Differentiating

u(x) =
∫

B
g(y)R(x, y) dV (y) we obtain

Dju(x) =

∫

B

g(y)
∂

∂xj
R(x, y) dV (y),

and consequently

|∇u(x)| ≤ ‖g‖∞

∫

B

|∇xR(x, y)| dV (y). (4–6)
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Using (2–5) we have

∇xR(x, y) =
n(y − |y|2x)

(1 − 2x · y + |x|2|y|2)1+n/2

(

n(1 − |x|2|y|2)2

(1 − 2x · y + |x|2|y|2)
− 4|x|2|y|2

)

+
1

(1 − 2x · y + |x|2|y|2)n/2

(

−4n(1 − |x|2|y|2)|y|2x

(1 − 2x · y + |x|2|y|2)
+

+
2n(1 − |x|2|y|2)2(y − x|y|2)

(1 − 2x · y + |x|2|y|2)2
− 8|y|2x

)

.

Noting that |y−|y|2x|2 = |y|2−2|y|2x ·y+ |y|4|x|2 = |y|2(1−2x ·y+ |y|2|x|2), we

see that |y − |y|2x| ≤ (1− 2x · y + |y|2|x|2)1/2. Recalling that also 1− |x|2|y|2 ≤

(1 − 2x · y + |y|2|x|2)1/2 we obtain

|∇xR(x, y)| ≤
C

(

1 − 2x · y + |x|2|y|2
)(n+1)/2

. (4–7)

Thus

∫

B

|∇xR(x, y)| dV (x) ≤ CnV (B)

∫ 1

0

rn−1

∫

S

1

|ζ − ry|n+1
dσ(ζ) dr.

Now,

∫

S

1

|ζ − ry|n+1
dσ(ζ) =

1

1 − r2|y|2

∫

S

1

|ζ − ry|
P (ry, ζ) dσ(ζ)

≤
1

1 − r2|y|2
1

(1 − r|y|)

∫

S

P (ry, ζ) dσ(ζ) ≤
1

(1 − r|y|)2
.

Multiply by nV (B)rn−1 and integrate with respect to r to obtain

∫

B

1

(1 − 2x · y + |x|2|y|2)(1+n)/2
dV (x) ≤ nV (B)

1

(1 − |y|)
. (4–8)

Using that 1/(1 − |y|) = (1 + |y|)/(1 − |y|2) ≤ 2/(1 − |y|2), we conclude from

(4–6), (4–7) and (4–8) that (1 − |y|2)|∇u(y)| ≤ 2nV (B)C‖g‖∞ for all y ∈ B,

establishing our claim that u ∈ B. This proves the inclusion Q[L∞(B)] ⊂ B.

The other inclusion B ⊂ Q[L∞(B)] follows from Theorem 4.1, for if u ∈ B,

the function g = (1 − |x|2)Ru+ ( 1
2n+ 1)(1 − |x|2)u is bounded on B. ˜

This corollary can be used to show that Theorem 3.1 does not hold for p = 1

or p = ∞. It is not difficult to construct unbounded harmonic Bloch functions

(the function u(x) = log((1− x1)
2 + x2

2) provides an example), so Corollary 4.2

shows that the operator Q is not L∞-bounded. By duality it follows that Q is

not L1-bounded either.
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The dual of b1(B). We will show how Corollary 4.2 can be used to prove that

B is the dual of b1(B). Our first concern is to define a “pairing”: given a function

v ∈ B we could try to define ϕ by ϕ(u) = 〈u, v〉 (u ∈ B), but we have to be careful

here: the function v need not be bounded, so there is no guarantee that uv̄ is

integrable for all u ∈ b1(B) (in fact, if v is unbounded, some standard functional

analysis can be used to prove that there must exist a function u ∈ b1(B) for which

uv̄ is not integrable). This problem is easily overcome by using dilates. If u is a

harmonic function on B and 0 < r < 1, the dilate ur, defined by ur(x) = u(rx),

x ∈ B, is bounded on B. If u ∈ C(B̄), then u is uniformly continuous on B, and

it follows that ur → u uniformly on B as r → 1−. Using the fact that C(B̄) is

dense in L1(B) it is easy to verify that if u ∈ b1(B), then ur → u in b1(B) as

r → 1−.

We are now ready to extend the usual pairing. Given u ∈ b1(B) and v ∈ B

we claim that limr→1−〈ur, v〉 exists. To prove this, write v = Q[g], where g ∈

L∞(B). Since ur ∈ b2(B) we have 〈ur, v〉 = 〈ur, Q[g]〉 = 〈ur, g〉. The inequality

|〈ur, v〉 − 〈us, v〉| = |〈ur − us, g〉| ≤ ‖ur − us‖1‖g‖∞ together with the fact that

‖ur−us‖1 → 0 as r, s→ 1− (because ‖ur−us‖1 ≤ ‖ur−u‖1+‖u−us‖1) implies

that limr→1−〈ur, v〉 exists. It is clear that the function ϕ defined by

ϕ(u) = lim
r→1−

〈ur, v〉 for u ∈ b1(B)

is a linear functional on b1(B). Using |〈ur, v〉| ≤ ‖ur‖1‖g‖∞ we see that |ϕ(u)| ≤

‖u‖1‖g‖∞, so ϕ ∈ b1(B)∗.

We claim that every element of b1(B)∗ is of the form above. For let ϕ ∈

b1(B)∗. By the Hahn-Banach theorem, ϕ extends to a bounded linear functional

ψ on L1(B, dV ). There exists a g ∈ L∞(B) such that ψ(f) = 〈f, g〉 for all

f ∈ L1(B). In particular, ϕ(u) = 〈u, g〉 for all u ∈ b1(B). Now, if u ∈ b1(B),

then ur → u in b1(B) as r → 1−, and thus ϕ(u) = limr→1− ϕ(ur). Since

ur ∈ b2(B) we have 〈ur, g〉 = 〈Q[ur], g〉 = 〈ur, Q[g]〉. Thus, if we set v = Q[g],

then ϕ(u) = limr→1−〈ur, v〉, as was to be proved. ˜

The predual of b1(B). In this subsection we will identify the predual of b1(B)

under the above pairing. We define the space B0, called the harmonic little Bloch

space, to be the set of all harmonic functions u on B for which (1−|x|2)|∇u(x)| →

0 as |x| → 1−. Clearly, B0 ⊂ B. We leave it as an exercise for the reader to

show that if u ∈ B0, then ‖ur − u‖B → 0 as r → 1− (the converse is also true).

Now suppose that u ∈ B0 and v ∈ b1(B). We claim that limr→1−〈ur, v〉 exists.

To show this, we use Corollary 4.2 (or rather its proof) to conclude that

|〈ur, v〉 − 〈u, vr〉| ≤ |〈ur − u, v〉| + |〈u, v − vr〉|

≤ C‖ur − u‖B‖v‖1 + C‖u‖B‖v − vr‖1,

and the statement follows. So if v ∈ b1(B), then ϕ(u) = limr→1−〈ur, v〉 defines

a bounded linear functional on B0.
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Our claim is that all bounded linear functionals on B0 arise this way. Suppose

ϕ is a bounded linear functional on B0. Then ψ(g) = ϕ(Q[g]) defines a bounded

linear functional on C(B̄): |ψ(g)| = |ϕ(Q[g])| ≤ ‖ϕ‖ ‖g‖2 ≤ ‖ϕ‖ ‖g‖∞. By the

Riesz representation theorem ψ(g) =
∫

B̄
g dµ, for all g ∈ C(B̄), where µ is a

finite complex Borel measure on B̄. If u ∈ B0, then g(x) = (1 − |x|2){Ru(x) +

( 1
2n + 1)u(x)} is in C(B̄), and, using Theorem 4.1, we have ϕ(u) = ψ(g) =
∫

B̄
g(y) dµ(y). Define

v(x) =

∫

B̄

(1 − |y|2){RxR(x, y) + ( 1
2n+ 1)R(x, y)} dµ̄(y) for x ∈ B.

The function v is clearly harmonic in B. We claim that in fact v ∈ b1(B). To

show this, use Fubini’s theorem to get
∫

B

|v(x)| dV (x) ≤

∫

B̄

(1− |y|2)

∫

B

{|RxR(x, y)|+( 1
2n+1)|R(x, y)|} dV (x) d|µ|(y)

In the proof of Corollary 4.2 we have seen that there exists a positive constant

C such that
∫

B
|RxR(x, y)| dV (x) ≤ C/(1 − |y|2). Also, using (2–6) and (1–5),

we have
∫

B

|R(x, y)| dV (x) ≤ 4n

∫ 1

0

rn−1

∫

S

1

|ζ − ry|n
dσ(ζ) dr

= 4n

∫ 1

0

rn−1 1

1 − r2|y|2
dr

≤ 4n

∫ 1

0

rn−1 1

1 − |y|2
=

4

1 − |y|2
.

Thus,
∫

B

|v(x)| dV (x) ≤

∫

B̄

(1 − |y|2)
C ′

1 − |y|2
d|µ|(y) = C ′

∫

B̄

d|µ|(y) = C ′‖µ‖ <∞,

and our claim that v ∈ b1(B) is proved. Now, assuming u to be harmonic on B̄,

applying Fubini’s theorem we have

〈u, v〉 =

∫

B̄

(1 − |y|2)

∫

B

u(x){RxR(x, y) + ( 1
2n+ 1)R(x, y)} dV (x) dµ(y).

Similarly to (4–3) we have
∫

B
u(x)RxR(x, y) dV (x) =

∫

B
Ru(x)R(x, y) dV (x) =

Ru(y), thus
∫

B

u(x){RxR(x, y) + ( 1
2n+ 1)R(x, y)} dV (x) = Ru(y) + ( 1

2n+ 1)u(y)

and we obtain

〈u, v〉 =

∫

B̄

(1 − |y|2)
{

Ru(y) + ( 1
2n+ 1)u(y)

}

dµ(y) =

∫

B̄

g(y) dµ(y) = ϕ(u).

Hence ϕ(ur) = 〈ur, v〉, and since ur → u in B0 and ϕ is continuous on B0 we

have ϕ(u) = limr→1−〈ur, v〉. Note that this pairing coincides with the one we

saw earlier: if u ∈ B0 and v ∈ b1(B), then limr→1−〈ur, v〉 = limr→1−〈u, vr〉. ˜
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