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Recent Progress in the Function Theory

of the Bergman Space

HÅKAN HEDENMALM

Abstract. The recent developments in the function theory of the Bergman

space are reviewed. Key ingredients are: factorization based on extremal di-

visors, an analog of Beurling’s invariant subspace theorem, concrete exam-

ples of invariant subspaces of index higher than one, a partial description of

zero sequences, characterizations of interpolating and sampling sequences,

and some remarks on weighted Bergman spaces.

1. The Hardy and Bergman Spaces: A Comparison

The Hardy space H2 consists of all holomorphic functions on the open unit

disk D such that

‖f‖H2 = sup
0<r<1

(∫

T

|f(rz)|2 ds(z)

)1

2

< +∞, (1–1)

where T stands for the unit circle and ds is arc length measure, normalized so

that the mass of T equals 1. In terms of Taylor coefficients, the norm takes a

more appealing form: if f(z) =
∑

n anzn, then

‖f‖H2 =

(∑

n

|an|2
)1

2

.

The Bergman space L2
a, on the other hand, consists of all holomorphic functions

on D such that

‖f‖L2
a

=

(∫

D

|f(z)|2 dS(z)

)1

2

< +∞,

where dS is area measure, normalized so that the mass of D equals 1. Though

the integral expression of the norm is more straightforward than for the Hardy
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space, it is more complicated in terms of Taylor coefficients: if f(z) =
∑

n anzn,

then

‖f‖L2
a

=

(∑

n

|an|2
n + 1

)1

2

.

The Bergman space L2
a contains H2 as a dense subspace. It is intuitively clear

from the definition of the norm in H2 that functions in it have well-defined

boundary values in L2(T). This is however not the case for L2
a. In fact, there is

a function in it which fails to have radial limits at every point of T. This is a

consequence of a more general statement due to MacLane [1962]; see also [Luzin

and Privalov 1925; Cantor 1964]. Apparently the two spaces H2 and L2
a are very

different from a function-theoretic perspective.

The Hardy space theory. The classical factorization theory for the Hardy

spaces (these are the spaces Hp, with 0 < p ≤ +∞, which are defined by

property (1–1), with 2 replaced by p), which relies on work due to Blaschke, Riesz,

and Szegö, requires some familiarity with the concepts of a Blaschke product, a

singular inner function, an inner function, and an outer function. Let H∞ stand

for the space of bounded analytic functions in D, supplied with the supremum

norm. Given a (finite or infinite) sequence A = {aj}j of points in D, one considers

the product

BA(z) =
∏

j

āj

|aj |
aj − z

1 − ājz
for z ∈ D,

which converges to a function in H∞ of norm 1 if and only if the Blaschke

condition
∑

j 1− |aj | < +∞ is fulfilled, in which case A is said to be a Blaschke

sequence, and BA is said to be a Blaschke product. We note that for Blaschke

sequences A, BA vanishes precisely on the A in D, with appropriate multiplicities,

depending on how many times a point is repeated in the sequence. Moreover,

the function BA has boundary values of modulus 1 almost everywhere, provided

that the limits are taken in nontangential approach regions. We also note that

if the sequence A fails to be Blaschke, the product BA collapses to 0. Given

a finite positive Borel measure µ on the unit circle T, which is singular to arc

length Lebesgue measure, one associates a singular inner function

Sµ(z) = exp

(
−

∫

T

ζ + z

ζ − z
dµ(ζ)

)
for z ∈ D,

which is in H∞, and has norm 1 there. Also, Sµ has no zeros in D, and its

nontangential boundary values are almost all 1 in modulus. This is the general

criterion for a function in H∞ to be inner: to have boundary values of modulus 1

almost everywhere. A product of a unimodular constant, a Blaschke product,

and a singular inner function, is still inner, and all inner functions are obtained

this way. If h is a real-valued L1 function on T, the associated outer function is

Oh(z) = exp

(∫

T

ζ + z

ζ − z
h(ζ) ds(ζ)

)
for z ∈ D,
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which is an analytic function in D with |Oh(z)| = exp
(
h(z)

)
almost everywhere

on the circle, the boundary values of Oh being thought of in the non-tangential

sense. The function Oh is in H2 if and only if exp(h) is in L2(T). The factoriza-

tion theorem in H2 then states that every nonidentically vanishing f in H2 has

the form

f(z) = γBA(z)Sµ(z)Oh(z) for z ∈ D,

where γ is a unimodular constant, and exp(h) ∈ L2(T). The natural setting for

the factorization theory is a larger class of functions, known as the Nevanlinna

class. To make a long story short it consists of all functions of the above type,

where no additional requirement is made on h, and where the singular measure

µ is allowed to take negative values as well. We denote the Nevanlinna class by

N . It is well known that f ∈ N if and only if the function f is holomorphic in

D, and

sup
0<r<1

∫

T

log+ |f(rz)| ds(z) < +∞.

The Bergman space case: inner functions. The Bergman space L2
a contains

H2. How then does it relate to N? It turns out that there are functions in N

that are not in L2
a, and that there are functions in L2

a which are not in N . The

latter statement follows from the fact alluded to above that there is a function in

L2
a lacking nontangential boundary values altogether. The functions in N , on the

other hand, all do have finite nontangential boundary values almost everywhere.

The former statement follows from a much simpler example: take µ equal to a

point mass at, say 1, and consider the function 1/Sµ. It is in the Nevanlinna

class, but it is much too big near 1 to be in L2
a.

The classical Nevanlinna factorization theory is ill-suited for the Bergman

space. This is particularly apparent from the fact that there are zero sequences

for L2
a that are not Blaschke. The question is which functions can replace the

Blaschke products or more general inner functions in the Bergman space setting.

There may be several ways to do this, but only one is canonical from the point

of view of operator theory.

A subspace M of H2 is invariant if it is closed and zM ⊂ M . It is well known

that inner functions in H2 are characterized as elements of unit norm in some

M 	 zM , where M is a nonzero invariant subspace. Following Halmos, we call

M 	 zM the wandering subspace for M . For a collection L of functions in H 2,

we let [L] stand for the smallest invariant subspace containing L. We note that

u ∈ H2 is an inner function if and only if

h(0) =

∫

T

h(z) |u(z)|2 ds(z) for h ∈ L∞

h (D), (1–2)

L∞

h (D) being the Banach space of bounded harmonic functions on D.

We take (1–2) as the starting point in our search for analogues of inner func-

tions for the Bergman space L2
a. We say that a function G ∈ L2

a is L2
a-inner
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provided that

h(0) =

∫

D

h(z) |G(z)|2 dS(z) for h ∈ L∞

h (D). (1–3)

A function G of unit norm in L2
a is L2

a-inner if and only if it is in a wandering

subspace M	zM for some nonzero invariant subspace M of L2
a. In contrast with

the H2 case, where M 	 zM always has dimension 1 (unless M is the zero sub-

space), this time the dimension may take any value in the range 1, 2, 3, . . . ,+∞.

This follows from the dilation theory developed by Apostol, Bercovici, Foiaş, and

Pearcy [Apostol et al. 1985]. The dimension of M 	 zM will be referred to as

the index of the invariant subspace M .

For the space H2, Beurling’s invariant subspace theorem yields a complete

description:

Theorem 1.1 [Beurling 1949]. Let M be an invariant subspace of H2, and let

M 	 zM be the associated wandering subspace. Then M = [M 	 zM ]. If M

is not the zero subspace, then M 	 zM is one-dimensional and spanned by an

inner function, call it ϕ. It follows that M = [ϕ] = ϕH2.

A natural question is whether the analogous statement M = [M 	 zM ] (with

the brackets referrring to the invariant subspace lattice of L2
a this time) holds

for general invariant subspaces M of L2
a. Pleasantly, and perhaps surprisingly,

this turns out to be true [Aleman et al. 1996]. We shall return to this matter in

Section 3.

2. Factorization of Zeros in the Bergman Space

The treatment of the subject matter of this section is taken from [Hedenmalm

1991; 1994a; Duren et al. 1993; 1994]. It should be mentioned that the first

results on factorization in Bergman spaces were obtained by Horowitz [1974],

and slightly later, but independently, by Korenblum [1975].

An example. We begin with a simple but illuminating example: a multiple zero

at the origin of multiplicity n. Let Mn be the subspace of L2
a of all such functions,

which is clearly invariant. The associated wandering subspace Mn	zMn is one-

dimensional, and spanned by the unit vector Gn(z) =
√

n + 1 zn. According

to the terminology introduced in the previous section, the function Gn is an

L2
a-inner function. Since it comes from a zero-based invariant subspace, it is

a Bergman space analog of a (finite) Blaschke product. Let f be an arbitrary

element of Mn, which then has a Taylor expansion f(z) =
∑

∞

j=n ajz
j . It can be

factored f = Gng, where g(z) = (n + 1)−1/2
∑

∞

j=n ajz
j−n. Let us compare the

norms of f and g,

‖g‖2
L2

a

=
1

n + 1

∞∑

j=n

|aj |2
j − n + 1

≤
∞∑

j=n

|aj |2
j + 1

= ‖f‖2
L2

a

;
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here, we used that

j + 1 ≤ (n + 1)(j − n + 1) for j = n, n+1, . . . .

Since g = f/Gn, we see that division by the unit element Gn of the wandering

subspace Mn 	 zMn is contractive on Mn; in other words, multiplication by Gn

is norm expansive on L2
a.

General zero sets. Now let A be a zero sequence for the space L2
a, counting

multiplicities, and let MA be the subspace of all functions in L2
a that vanish on

A, with at least the given multiplicity at each point. It is an invariant subspace,

and its wandering subspace MA 	 zMA is one-dimensional. Let GA denote a

unit element of the wandering subspace. Let j be the multiplicity of the origin

in the sequence A (which is 0 if the origin is not in A). By multiplying GA by

an appropriate unimodular constant, we may suppose that it solves the extremal

problem

sup
{

Re G(j)(0) : G ∈ MA, ‖G‖L2
a

= 1
}
. (2–1)

The above example with a multiple zero at the origin suggests that the function

GA may be a contractive divisor on MA. This turns out to be the case. To begin

with, we must rule out the possibility that the function GA may have extraneous

zeros.

More general invariant subspaces. We consider a more general situation

with an invariant subspace M of index 1, and let GM be a unit element of the

one-dimensional wandering subspace M 	 zM . We shall show that for f ∈ H 2,

GMf is in L2
a, and that

‖f‖L2
a
≤ ‖GMf‖L2

a
≤ ‖f‖H2 . (2–2)

One of the inequalities states that multiplication by GM expands the L2
a norm

of functions in H2; this is what entails, after some work, that division by GM is

well-defined and norm contractive M → L2
a. As in the above case M = MA, we

may assume, by multiplying GM by an appropriate unimodular constant, that

it solves the extremal problem

sup
{

Re G(j)(0) : G ∈ M, ‖G‖L2
a

= 1
}
, (2–3)

where j is the multiplicity of the common zero at the origin of all the functions

in M . For this reason, we shall refer to GM as the extremal function for M .

Since GM is an L2
a-inner function,

h(0) =

∫

D

h(z) |GM (z)|2 dS(z) for h ∈ L∞

h (D),

and so ∫

D

h(z)
(
|GM (z)|2 − 1

)
dS(z) = 0 for h ∈ L∞

h (D). (2–4)
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Equation (2–4) has the interpretation that |GM |2 − 1 annihilates the bounded

harmonic functions on D.

Potential theory. Consider the function ΦM that solves the boundary value

problem {
∆ΦM = |GM |2 − 1 on D,

ΦM = 0 on T,
(2–5)

where ∆ is one quarter of the usual Laplacian (this is not so important, really,

one can use the standard Laplacian, only later would we then have to use slightly

different Green functions). If we play around with Green’s formula, in the form
∫

D

(
v∆u − u∆v

)
dS =

∫

T

(
v
∂u

∂n
− u

∂v

∂n

)
1
2 ds, (2–6)

where the normal derivatives are taken in the outward direction, and forget

about regularity requirements, then (2–4) can be reformulated as saying that the

normal derivative of ΦM vanishes on T. If we add this condition to (2–5), this

system becomes overdetermined. Elliptic equations of order 2m are determined

by m boundary data, so we may raise the order of the partial differential equation

to 4 and keep a unique solution. This is accomplished by applying a Laplacian

to both sides, and we get, in view of ∆
(
|GM |2 − 1

)
= |G′

M |2, that





∆2ΦM = |G′

M |2 on D,

ΦM = 0 on T,

∂

∂n
ΦM = 0 on T.

(2–7)

The Green function for ∆2 is the function U(z, ζ) on D ×D that solves for fixed

ζ ∈ D 



∆2U( · , ζ) = δζ on D,

U( · , ζ) = 0 on T,

∂
∂nU( · , ζ) = 0 on T,

and it is given explicitly as

U(z, ζ) = |z − ζ|2Γ(z, ζ) + (1 − |z|2)(1 − |ζ|2),

where

Γ(z, ζ) = 2 log

∣∣∣∣
z − ζ

1 − ζ̄z

∣∣∣∣
is the Green function for ∆. These are the expressions obtained when it is

agreed to identify locally integrable functions ϕ with the corresponding measures

ϕdS (recall that dS involved some normalization) to interpret the functions as

distributions.

By now it should not require too much of a leap of faith to believe that

ΦM (z) =

∫

D

U(z, ζ) |G′

M (ζ)|2 dS(ζ),
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so that in view of the fact that 0 < U(z, ζ) on D × D, 0 < ΦM on D, unless GM

is constant, in which case ΦM = 0. If we apply Green’s formula (2–6) and recall

the definition of ΦM , it follows that

∫

D

(
|GM (z)|2 − 1

)
|f(z)|2 dS(z) =

∫

D

ΦM (z) |f ′(z)|2 dS(z),

for, say, polynomials f . We rewrite this as
∫

D

|GM (z)f(z)|2 dS(z)

=

∫

D

|f(z)|2 dS(z) +

∫

D

ΦM (z) |f ′(z)|2 dS(z)

=

∫

D

|f(z)|2 dS(z) +

∫

D

∫

D

U(z, ζ) |f ′(z)|2|G′

M (ζ)|2 dS(z) dS(ζ). (2–8)

Let Ψ solve
{

∆Ψ = −1 on D,

Ψ = 0 on T;

the solution comes out to be Ψ(z) = 1 − |z|2. The function ΦM − Ψ is subhar-

monic, and has 0 boundary values, so inside D it must be ≤ 0. In view of what

we have already shown, it follows that 0 ≤ ΦM (z) ≤ Ψ(z) = 1 − |z|2. It is well

known that

‖f‖2
H2 = ‖f‖2

L2
a

+

∫

D

(1 − |z|2) |f ′(z)|2 dS(z) for f ∈ H2,

so that by continuity, identity (2–8) extends to all f ∈ H2, and (2–2) holds. Let

A(GM ) be the space of all functions f ∈ L2
a with

‖f‖2
A(GM ) = ‖f‖2

L2
a

+

∫

D

∫

D

U(z, ζ) |f ′(z)|2|G′

M (ζ)|2 dS(z) dS(ζ) < +∞,

and let A0(GM ) be the closure of the polynomials in A(GM ). Then multiplication

by GM is an isometry A0(GM ) → M ⊂ L2
a, and H2 ⊂ A0(GM ) ⊂ A(GM ) ⊂

L2
a. Moreover, the injection mappings H2 → A0(GM ) and A(GM ) → L2

a are

contractions. It follows that the invariant subspace generated by GM , [GM ],

equals GM A0(GM ). A number of questions appear:

• Is A0(GM ) = A(GM )?

• Is [GM ] = M?

• Is A(GM ) = {f ∈ L2
a : GMf ∈ L2

a}?

The answer to the first two questions is yes [Aleman et al. 1996] (see Section 3).

The answer to the third question is no [Borichev and Hedenmalm 1995; 1997].
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Extraneous zeros. Let λ be a point of D, and let Gλ be the extremal function

associated with Mλ, the invariant subspace of all functions vanishing at λ. In

terms of the Bergman kernel function k(z, ζ) = (1 − ζ̄z)−2, it has the form

Gλ(z) =

(
1 − 1

k(λ, λ)

)−
1

2

(
1 − k(z, λ)

k(λ, λ)

)
,

and one quickly verifies that on T, it has modulus bigger than 1, and in D, it

has a simple zero at λ, and nowhere else. This means that if f ∈ L2
a vanishes

at λ, then f/Gλ ∈ L2
a, and since multiplication by Gλ is norm expansive on

L2
a (see (2–2) and (2–8) for M = Mλ), ‖f/Gλ‖L2

a
≤ ‖f‖L2

a
. Now suppose that

GM has an extraneous zero at λ by which we mean that GM vanishes at λ

with a multiplicity higher than that of some element of M . By inspection of

the extremal problem (2–3), to which GM is the unique solution, we see that

λ cannot be 0. If we divide GM by Gλ, we get an element of L2
a. If GM/Gλ

is in fact in M , then the function G̃ = γGM/Gλ, with γ = ‖GM/Gλ‖−1
L2

a

, is

a competing function with GM in the extremal problem (2–3). It has norm 1,

belongs to M , and the j-th derivative at 0 is G̃(j)(0) = γG
(j)
M (0)/Gλ(0), which

is bigger than G
(j)
M (0), as 1 < γ and Gλ(0) < 1. Hence G̃ is more extremal

than GM itself, which leads to a contradiction. So, the assumption that GM had

an extraneous zero must be false. The weak point thus far is that we have not

explained why GM/Gλ was in M in the first place. Recall that M 	 zM was

one-dimensional: from a perturbation argument it follows that M 	 (z − λ)M

is one-dimensional for each λ ∈ D. The subspace (z − λ)M having codimension

one in M means that it consists of all functions in M having an extra zero (or a

zero of multiplicity one higher) at λ, so that GM , having an extraneous zero at

λ, must be in (z − λ)M . The conclusion that GM/Gλ is in M follows.

Factorization of zeros. Let us see what kinds of conclusions we can draw from

the above. For a finite zero sequence A, GA has no extraneous zeros in D, extends

analytically across T to a rational function with poles at the reflected points in

T of A, and the expansive multiplier property (2–2) implies that 1 ≤ |GA| on T.

One shows that A0(GA) = L2
a (the norms are different, though equivalent), so

that GA is an expansive multiplier on all of L2
a. It follows that

‖f‖2
L2

a

=‖f/GA‖2
L2

a

+

∫

D

∫

D

U(z, ζ) |(f/GA)′(z)|2|G′

A(ζ)|2 dS(z) dS(ζ), f ∈MA,

and if we go to the limit as A approaches an infinite zero sequence, Fatou’s

lemma yields a ≥ in place of the = sign. In particular, f/GA ∈ A(GA) ⊂ L2
a,

and division by GA is norm contractive MA → L2
a.

3. General Invariant Subspaces

Most of the results mentioned here are from [Aleman et al. 1996].
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The following version of (2–8) will prove useful:

‖f‖2
L2

a

= ‖f/GM‖2
L2

a

+

∫

D

∫

D

U(z, ζ) |(f/GM )′(z)|2|G′

M (ζ)|2 dS(z) dS(ζ)

for f ∈ [GM ]. (3–1)

A skewed projection operator. Let M be an invariant subspace in L2, and

suppose for the moment that it has index 1; GM denotes the associated extremal

function. For λ ∈ D,

f =
f(λ)

GM (λ)
GM +

(
f − f(λ)

GM (λ)
GM

)
for f ∈ M

offers a unique decomposition of M as a sum, M = (M 	 zM) + (z − λ)M , and

as the two summands are got by bounded (skewed) projection operators, the

subspaces M 	 zM and (z − λ)M are at a positive angle. Note that the first

projection,

Qλf =
f(λ)

GM (λ)
GM for f ∈ M,

is well-defined for all λ ∈ D as we know that GM has no extraneous zeros. In

terms of Qλ, identity (3–1) can be written as

‖f‖2
L2

a

=

∫

D

‖Qλf‖2
L2

a

dS(λ) +

∫

D

∫

D

U(z, ζ)∆z∆ζ |Qzf(ζ)|2 dS(z) dS(ζ)

for f ∈ [GM ]. (3–2)

This form lends itself to generalization to general invariant subspaces M , not

necessarily of index 1. Namely, one shows that a skewed decomposition of the

type M = (M 	 zM) + (z − λ)M holds in general, so that a corresponding

projection Qλ : M → M 	 zM can be defined, and it depends analytically on

λ ∈ D. Moreover, (3–2) carries over, almost letter by letter:

‖f‖2
L2

a

=

∫

D

‖Qλf‖2
L2

a

dS(λ) +

∫

D

∫

D

U(z, ζ)∆z∆ζ |Qzf(ζ)|2 dS(z) dS(ζ)

for f ∈ [M 	 zM ]. (3–3)

Abel summation. Define the bounded linear operator L : M → M by declar-

ing that Lf = f/z for f ∈ zM , and Lf = 0 for f ∈ M 	 zM . Also, let P

be the orthogonal projection M → M 	 zM . If f is in M , we can decompose

f as a sum of an element of M 	 zM and a “remainder term” by the formula

f = Pf + zLf . Repeating this for Lf , we obtain f = Pf + zPLf + z2L2f .

Continuing this process, we get the formal series

f = Pf + zPLf + z2PL2f + z3PL3f + · · · ,

each term of which is in [M 	 zM ]. If the series were to converge to f for each

given f ∈ M , the assertion M = [M 	 zM ] would be immediate. However, this
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is probably not the case in general, so we choose the second best thing: we form

the Abel series

Rtf = Pf + tzPLf + t2z2PL2f + t3z3PL3f + · · · for 0 ≤ t < 1,

which does converge to an element of [M 	 zM ], in the hope that Rtf → f as

t → 1. The skewed projection Qλ has a similar series expansion,

Qλf = Pf + λPLf + λ2PL2f + λ3PL3f + · · · for λ ∈ D,

which one can use to show that QλRt = Qtλ. The operator Rt may also be

thought of as given by Rtf(z) = Qtzf(z). As t → 1, Qtzf(z) → Qzf(z), and

Qzf(z) = f(z), because by the definition of Qλ, f(z) − Qλf(z) is zero when

z = λ. If follows that Rtf(z) → f(z) as t → 1 pointwise in D. It remains to

show that the convergence holds in norm, too.

Controlling the norm of the Abel sum. General functional analysis argu-

ments show that we do not really need to show that Rtf tends to f in norm,

weak convergence would suffice. Moreover, weak convergence would follow if we

only had a uniform bound of the norm of Rtf as t → 1. This is the crux of the

problem. By (3–3) and the identity QλRt = Qtλ,

‖Rtf‖2
L2

a

=

∫

D

‖Qtλf‖2
L2

a

dS(λ)+

∫

D

∫

D

U(z, ζ)∆z∆ζ |Qtzf(ζ)|2 dS(z) dS(ζ)

for f ∈ M. (3–4)

Certain regularity properties of the biharmonic Green function U(z, ζ) can be

used to show that, as t → 1, the right hand side of (3–4) tends to

∫

D

‖Qλf‖2
L2

a

dS(λ) +

∫

D

∫

D

U(z, ζ)∆z∆ζ |Qtzf(ζ)|2 dS(z) dS(ζ), (3–5)

so if we can only bound this expression, we are done. A bound that works is

‖f‖2
L2

a

. The approach in [Aleman et al. 1996] is based on the identity

‖f‖2
L2

a

=

∫

T

‖Qrλf‖2
L2

a

ds(λ) +

∫

D

∫

T

(|z|2 − r2)

∣∣∣∣
f(z) − Qrλf(z)

z − rλ

∣∣∣∣
2

ds(λ) dS(z),

for 0 < r < 1. By cleverly applying Green’s theorem to the above right hand

side expression and obtaining estimates of “remainder terms” as r → 1, Aleman,

Richter, and Sundberg were able to show that the expression (3–5) is no bigger

than ‖f‖2
L2

a

, whence the following analogue of Beurling’s theorem follows.

Theorem 3.1. Let M be an invariant subspace of L2
a. Then M = [M 	 zM ].
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Invertibility and cyclicity. A function f ∈ L2
a is said to be cyclic if [f ] = L2

a.

It has been a long standing problem whether there are noncyclic functions f ∈
L2

a that are invertible, that is, 1/f ∈ L2
a. A complicated construction of such

functions was recently found by Borichev and Hedenmalm [1995; 1997]. The

idea is that if the given function f grows maximally fast on a “big” set, then an

H∞ function must be small there and hence cannot lift the small values of f as

required by cyclicity. This example has certain consequences for the uniqueness

of inner-outer factorization in L2
a [Aleman et al. 1996]. It is not clear whether the

invariant subspace associated to the constructed invertible noncyclic function is

in the closure of the collection of zero-based invariant subspaces, with respect to

any of the topologies suggested by Korenblum [1993].

4. Zero Sequences

The first results on zero sequences for Bergman space functions were obtained

by Horowitz [1974; 1977]. For instance, he showed that the union of two zero se-

quences need not be a zero sequence. If we consider the corresponding zero-based

invariant subspaces, call them MA and MB , then MA∩MB = {0}. Actually, this

behavior of index one invariant subspaces is the raison d’être for the invariant

subspaces of higher index [Richter 1987]. Also, look at the explicit constructions

in Section 6, and [Hedenmalm 1993; Hedenmalm et al. 1996b].

The sharpest results so far were obtained by Seip [1994; 1995]. The tools

were borrowed from the fundamental work of Korenblum [1975; 1977] on the

topological algebra A−∞, which consists of all functions f holomorphic in D that

meet the growth condition |f(z)| ≤ C(1 − |z|)−N for some positive constants C

and N .

For a finite subset F of T, let T \ F = ∪kIk be the complementary arcs, and

consider the Beurling-Carleson entropy of F ,

{̂(F ) =
∑

k

|Ik|
2π

(
log

2π

|Ik|
+ 1

)
.

Let d( · , · ) be the curvilinear metric d(eit, eis) = π−1|t − s| on T, where it is

assumed that |t− s| ≤ π. The Korenblum star associated with the finite set F is

G(F ) =
{
z ∈ D̄ \ {0} : d(z/|z|, F ) ≤ 1 − |z|

}
∪ {0},

and for a sequence A of points in D, let

σ(A,F ) =
∑

z∈A∩G(F )

log
1

|z|

be the local “Blaschke sum”. The Korenblum density δ(A) of the sequence A is

the infimum over all β such that

supF

(
σ(A,F ) − β{̂(F )

)
< +∞,
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the supremum being taken over all finite subsets of T.

Theorem 4.1 ([Seip 1994]). Let A be a sequence of points in D \ {0}. If A is

the zero sequence of some function in L2
a, then δ(A) ≤ 1

2 . On the other hand , if

δ(A) < 1
2 , then A is the zero sequence of some L2

a function.

5. Interpolating and Sampling Sequences

A sequence A = {aj}j of distinct points in D is said to be a sampling sequence

for L2
a if ∑

j

(1 − |aj |2)2|f(aj)|2 � ‖f‖2
L2 for f ∈ L2

a,

where the � sign means that the left hand side is bounded from above and

below by positive constant multiples of the right hand side. The reason why the

factor (1− |aj |2)2 is needed is that in a more general setting, one should use the

reciprocal of the reproducing kernel, k(aj , aj)
−1. Similarly, A is interpolating

for L2
a provided that to every l2 sequence {wj}j , there exists a function f ∈ L2

a

such that

(1 − |aj |2)f(aj) = wj for all j.

Generally, sampling sequences are fat, and interpolating sequences are thin.

Clearly, a sampling sequence cannot be a zero sequence for L2
a. However, every

interpolating sequence for L2
a is also a zero sequence, for the following reason.

Take an interpolant for the sequence w1 = 1 and wj = 0 for all other j, and

multiply this function by z − a1 to get a nonidentically vanishing function that

vanishes on the sequence A. This actually only shows that A must be a subse-

quence of an L2
a zero sequence, but it is well known that every subsequence of a

zero sequence for L2
a is itself a zero sequence for L2

a [Horowitz 1974; Hedenmalm

1991]. Seip [1993] has obtained a complete description of the sampling and in-

terpolating sequences for L2
a. We shall try to describe the result, but in order to

do so, we need some notation.

A sequence A = {aj}j of points in D is said to be uniformly discrete if for

some ε > 0,

ε ≤
∣∣∣∣

aj − ak

1 − ākaj

∣∣∣∣ for j 6= k.

For λ ∈ D, let Aλ be the image of A under the conformal automorphism of the

unit disk

ϕλ(z) =
z − λ

1 − λ̄z
for z ∈ D.

Associate with Aλ the function n(r,Aλ), which counts the number of points of

Aλ contained within the disk rD (0 < r < 1). We shall need the definite integral

N(r,Aλ) =

∫ r

0

n(t, Aλ) dt for 0 < r < 1.



PROGRESS IN THE FUNCTION THEORY OF THE BERGMAN SPACE 47

If A(r) stands for the function

A(r) = log
1 + r

1 − r
for 0 < r < 1,

Seip defines the upper density of A as

D+(A) = lim sup
r→1

sup
λ∈D

N(r,Aλ)

A(r)
,

and the lower density as

D−(A) = lim inf
r→1

inf
λ∈D

N(r,Aλ)

A(r)
.

For the standard Bergman space, his result is as follows.

Theorem 5.1. A sequence A of distinct points in D is sampling for L2
a if and

only if it can be expressed as a finite union of uniformly discrete sets and it

contains a uniformly discrete subsequence A′ for which D−(A′) > 1
2 .

Theorem 5.2. A sequence A of distinct points in D is interpolating for L2
a if

and only if it is uniformly discrete and D+(A′) < 1
2 .

6. Invariant Subspaces of Index Two or Higher

Back in Section 1 it was mentioned that an invariant subspace M of the

Bergman space L2
a may have index 1, 2, 3, . . . , whereas the most obvious exam-

ples have index 1. For instance, every zero based invariant subspace MA has

index 1, and so does every singly generated one. Invariant subspaces based on

singular masses at the boundary have index 1, too [Hedenmalm et al. 1996a]. It

is therefore a natural question to ask what these invariant subspaces of higher

index look like. A simple constuction was found in [Hedenmalm 1993].

Let A and B be two disjoint zero sequences for L2
a, and let C = A ∪ B.

Let M = MA ∨ MB , the smallest invariant subspace containing both MA and

MB ; it is obtained as the closure of the sum MA +MB . It turns out that in this

situation, either M = L2
a or M has index 2. Moreover, what determines which of

these alternatives occurs is the fatness of the sequence C. If one of the sequences

A and B fails to accumulate on an arc of T, then C is not fat enough, and so

M = L2
a. On the other hand, if C is sampling, then M has index 2, because MA

and MB are at a positive angle. To see this, let C = {cj}j , and use the sampling

property

‖f‖2
L2

a

�
∑

j

(1 − |cj |2)2|f(cj)|2 for f ∈ L2
a.

Let f ∈ MA and g ∈ MB be arbitrary. Then for every point cj of C, we have

|f(cj) + g(cj)|2 = |f(cj)|2 + |g(cj)|2,
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so that

‖f + g‖2
L2

a

�
∑

j

(1 − |cj |2)2|f(cj) + g(cj)|2

=
∑

j

(1 − |cj |2)2
(
|f(cj)|2 + |g(cj)|2

)
� ‖f‖2

L2
a

+ ‖g‖2
L2

a

.

Consequently, the sum MA + MB is closed, and it is easy to show that M has

index two: zM = zMA + zMB [Hedenmalm 1993].

7. Green Functions for Weights and Factorization

The results discussed in this section are mostly from [Hedenmalm 1996].

It is clear from Section 2 that Green functions for certain elliptic operators of

order 4 play an important role in the study of factorization in Bergman spaces.

Let ω be a nonnegative sufficiently smooth function in D, and let L2
a(ω) be the

corresponding weighted Bergman space of all holomorphic functions f in D with

‖f‖2
L2

a
(ω) =

∫

D

|f(z)|2ω(z) dS(z) < +∞.

It is a Hilbert space if ω is not equal to 0 too frequently near T; this is not so

precise, but it is enough for here. For the extremal functions to have a chance

to be good divisors, we need to ask of ω that

h(0) =

∫

D

h(z)ω(z) dS(z) for h ∈ L∞

h (D).

The relevant Green function is that of the operator ∆ω−1∆ on D, and issue is

whether it is positive (or at least nonnegative). It was shown in [Hedenmalm

1994b] that it is positive for the weights ωα(z) = (α + 1) |z|2α, with α > −1,

and the issue at hand is whether this information can be used to tell us anything

about weights that are convex combinations of these. For instance, is it true in

general that if ω and µ are two weights, with associated Green functions Uω and

Uµ, that we have, with ω[t] = (1 − t)ω + tµ,

(1−t)Uω(z, ζ)+tUµ(z, ζ) ≤ Uω[t](z, ζ) for (z, ζ) ∈ D×D and 0 < t < 1 ? (7–1)

This is probably not so, although I cannot supply an immediate counterexample.

However, with some additional information given in terms of the Green functions,

it is true. If we apply a Laplacian to Uω(z, ζ), we get

∆zUω(z, ζ) = ω(z)
(
Γ(z, ζ) + Hω(z, ζ)

)
,

where Hω(z, ζ) is harmonic in z. We call Hω the harmonic compensator. If

Hµ(z, ζ) ≤ Hω(z, ζ) holds pointwise, then (7–1) holds, and Hµ(z, ζ) ≤ Hωt
(z, ζ)

also holds pointwise. A consequence of this result is that if

ω(z) =

∫

]−1,+∞[

(α + 1) |z|2αdρ(α),



PROGRESS IN THE FUNCTION THEORY OF THE BERGMAN SPACE 49

where ρ is a probability measure, then

0 ≤
∫

]−1,+∞[

Uωα
(z, ζ) dρ(α) ≤ Uω(z, ζ) for (z, ζ) ∈ D × D.

For related work see, for instance, [Shimorin 1993; 1995].
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