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A Basic Interpolation Problem

HARRY DYM

Abstract. A basic interpolation problem, which includes bitangential ma-

trix versions of a number of classical interpolation problems, is formulated

and solved. Particular attention is placed on the development of the prob-

lem in a natural way and upon the fundamental role played by a special

class of reproducing kernel Hilbert spaces of vector-valued meromorphic

functions that originate in the work of L. de Branges. Necessary and suf-

ficient conditions for the existence of a solution to this problem, and a

parametrization of the set of all solutions to this problem when these con-

ditions are met, are presented. Some comparisons with the methods of

Katsnelson, Kheifets, and Yuditskii are made. The presentation is largely

self-contained and expository.

1. Introduction

This paper presents a largely self-contained expository introduction to a num-

ber of problems in interpolation theory for matrix-valued functions, including

the classical problems of Schur, Nevanlinna–Pick (NP), and Carathéodory–Fejér

(CF) as special cases. The development will use little more than the elementary

properties of vector-valued Hardy spaces of exponent 2.

To illustrate the scope of the paper we shall begin with sample problems, all

of which are formulated in the class Sp×q(Ω+) of p × q matrix-valued functions

(mvf) S(λ) that are analytic and contractive in a given region Ω+ in the complex

plane C.

Example 1.1 (The left tangential NP problem). The data for this prob-

lem is a set of points ω1, . . . , ωn in Ω+ and two sets of vectors: ξ1, . . . ξn in C
p

and η1, . . . ηn in C
q. An mvf S(λ) ∈ Sp×q(Ω+) is said to be a solution of this

problem if

ξ∗jS(ωj) = η∗j for j = 1, . . . , n. (1.1)
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Example 1.2 (The right tangential NP problem). The data for this

problem is exactly the same as for the preceding example, but now the interpo-

lation conditions are imposed on the right: An mvf S(λ) ∈ Sp×q(Ω+) is said to

be a solution of this problem if

S(ωj)ηj = ξj for j = 1, . . . , n. (1.2)

Example 1.3 (The bitangential NP problem). The data for this problem

is exactly the same as for the preceding two examples, but now the first µ inter-

polation constraints are imposed on the left and the last ν = n − µ constraints

are imposed on the right. An mvf S(λ) ∈ Sp×q(Ω+) is said to be a solution of

this problem if

ξ∗jS(ωj) = η∗j for j = 1, . . . , µ, (1.3)

and

S(ωj)ηj = ξj for j = µ+1, . . . , n. (1.4)

Example 1.4 (The left tangential CF problem). The data for this prob-

lem is a point ω ∈ Ω+, a vector ξ ∈ C
p and a set of vectors η1, . . . , ηn in C

q. An

mvf S(λ) ∈ Sp×q(Ω+) is said to be a solution of this problem if

ξ∗Sj−1(ω)

(j − 1)!
= η∗j for j = 1, . . . , n. (1.5)

Example 1.5 (A mixed problem). The data for this problem is a pair of

points ω1, ω2 in Ω+, a set of vectors ξ1 and ξ21, . . . , ξ2ν in C
p and a set of vectors

η11, . . . , η1µ and η2 in C
q. An mvf S(λ) ∈ Sp×q(Ω+) is said to be a solution of

this problem if
ξ∗1S

j−1(ω1)

(j − 1)!
= η1j for j = 1, . . . , µ, (1.6)

and
Sj−1(ω2)η2

(j − 1)!
= ξ2j for j = 1, . . . , ν. (1.7)

The basic objective for all these problems is twofold:

(1) To formulate necessary and sufficient conditions in terms of the given data for

the existence of at least one mvf S(λ) ∈ Sp×q(Ω+) that meets the interpolation

constraints.

(2) To describe the set of all mvf S(λ) ∈ Sp×q(Ω+) that meet the interpolation

constraints when the conditions for existence are met.

It turns out that when the region Ω+ is chosen to be either the open unit disc

D = {λ ∈ C : |λ| < 1},

or the open upper half-plane

C+ = {λ ∈ C : Imλ > 0},
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Ω+ D C+ Π+

a(λ) 1
√
π(1 − iλ)

√
π(1 + λ)

b(λ) λ
√
π(1 + iλ)

√
π(1 − λ)

ρω(λ) 1 − λω∗ −2πi(λ− ω∗) 2π(λ+ ω∗)

Ω0 T R iR

〈f, g〉 1
2π

∫ 2π

0
g(eiθ)∗f(eiθ)dθ

∫ ∞

−∞
g(x)∗f(x)dx

∫ ∞

−∞
g(iy)∗f(iy)dy

λ◦ 1/λ∗ if λ 6= 0 λ∗ −λ∗

f#(λ) f(λ◦)∗ f(λ◦)∗ f(λ◦)∗

δω(λ) λ− ω 2πi(λ− ω) −2π(λ− ω)

ab′ − ba′ 1 2πi −2π

ϕj,ω(λ) λj/(1 − λω∗)j+1 −1/2πi(λ− ω∗)j+1 (−1)j/2π(λ+ ω∗)j+1

(Rαρ
−1
ω )(λ) ω∗/ρω(α)ρω(λ) 2πi/ρω(α)ρω(λ) −2π/ρω(α)ρω(λ)

Table 1. Bringing the classical regions into a unified framework.

or the open right half-plane

Π+ = {λ ∈ C : Reλ > 0},

all these problems (as well as more complicated problems in more complicated

regions) can be incorporated into a more general problem, which we call the

Basic Interpolation Problem (BIP). Moreover, by exercising a little care in the

choice of notation, most of the analysis for all three of the classical choices of Ω+

mentioned above can be carried out in one stroke. Table 1 serves as a dictionary

for the meaning of the symbol that is appropriate for the region Ω+ in use.

In order to describe the BIP we need to introduce some notation.

Let Hk
2 (Ω+) denote the set of (k × 1)-vector-valued functions with entries in

the Hardy space H2(Ω+). This space is identified as a closed subspace of the

Hilbert space Lk
2(Ω0) of (k× 1)-vector-valued functions that are measurable and

square integrable (that is, 〈f, f〉, as defined in Table 1, is finite) on the boundary

Ω0 of Ω+ in the usual way. The symbol Hk
2 (Ω+)⊥ designates the orthogonal

complement of Hk
2 (Ω+) in Lk

2(Ω0) with respect to the inner product indicated

in Table 1,

p denotes the orthogonal projection of Lk
2(Ω0) onto Hk

2 (Ω+),

and

q′ = I − p denotes the orthogonal projection of Lk
2(Ω0) onto Hk

2 (Ω+)⊥.

The dependence of the projections on the height k of the column vectors is

suppressed in order to keep the notation simple.
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For each of the three listed choices of the kernel function ρω(λ), we have

Ω+ = {ω ∈ C : ρω(ω) > 0}

and

Ω0 = {ω ∈ C : ρω(ω) = 0}.
We shall take

Ω− = {ω ∈ C : ρω(ω) < 0}.
The use of such a flexible notation to cover problems in both D and C+ more or

less simultaneously was promoted in [Alpay and Dym 1984] and [Dym 1989a].

The observation that the kernels ρω(λ) that intervene in these problems can be

expressed in terms of a pair of polynomials a(λ) and b(λ) as

ρω(λ) = a(λ)a(ω)∗ − b(λ)b(ω)∗ (1.8)

was first made by Lev-Ari and Kailath [1986]. They noticed that certain fast

algorithms in which the term ρω(λ) intervenes will work if and only if ρω(λ) can

be expressed in the form (1.8). A general theory of reproducing kernels with

denominators of this form and their applications was developed in [Alpay and

Dym 1992; 1993a; 1993b; 1996]; for related developments see [Nudelman 1993].

The rest of the notation is fairly standard: The symbol A∗ denotes the adjoint

of an operator A on a Hilbert space, with respect to the inner product of the

space. If A is a finite matrix, the adjoint will always be computed with respect

to the standard inner product, so that in this case A∗ will be the Hermitian

transpose, or just the complex conjugate if A is a number. The symbol σ(A)

denotes the spectrum of a matrix A and J stands for the m×m signature matrix

J =

[
Ip 0

0 −Iq

]

with p ≥ 1, q ≥ 1 and p+ q = m.

The following evaluations, which depend basically on Cauchy’s formula for

H2(Ω+), will prove useful. For details, see [Dym 1994b, Section 2.2].

Lemma 1.6. If ω ∈ Ω+, u ∈ C
k and S(λ) ∈ Sp×q(Ω+), then:

(1)
u

ρω
∈ Hk

2 (Ω+) and
u

δω
∈ Hk

2 (Ω+)⊥.

(2) pS∗
u

ρω
= S(ω)∗

u

ρω
(when k = p).

(3) q′S
u

δω
= S(ω)

u

δω
(when k = q).

(4)
(
pS∗ϕj,ωu

)
(λ) =

∑j

i=0
S(j−i)(ω)∗ϕi,ω(λ)u (when k = p).

(5)
(
q′S(· − ω)−ju

)
(λ) =

∑j−1

i=0
(λ− ω)i−j S

(i)(ω)

i!
u (when k = q).
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2. The Basic Interpolation Problem

First formulation. The data for the Basic Interpolation Problem consists of a

set of 2n vector-valued functions g1, . . . , gn, h1, . . . , hn, where

g1, . . . , gµ ∈ Hp
2 (Ω+),

h1, . . . , hµ ∈ Hq
2 (Ω+),

gµ+1, . . . , gn ∈ Hp
2 (Ω+)⊥,

hµ+1, . . . , hn ∈ Hq
2 (Ω+)⊥.

An mvf S(λ) ∈ Sp×q(Ω+) is said to be a solution of this problem if

pS∗gj = hj for j = 1, . . . , µ

and

q′Shj = gj for j = µ+1, . . . , n.

Example 2.1. Let there be given points ω1, . . . , ωn in Ω+, vectors ξ1, . . . , ξn in

C
p and a second set of vectors η1, . . . , ηn in C

q, just as in Examples 1.1–1.3. Let

gj(λ) =





ξj
ρωj

(λ)
for j = 1, . . . , µ,

ξj
δωj

(λ)
for j = µ+1, . . . , n,

and

hj(λ) =





ηj

ρωj
(λ)

for j = 1, . . . , µ,

ηj

δωj
(λ)

for j = µ+1, . . . , n.

Then

gj ∈ Hp
2 (Ω+) and hj ∈ Hq

2 (Ω+) for j = 1, . . . , µ,

whereas

gj ∈ Hp
2 (Ω+)⊥ and hj ∈ Hq

2 (Ω+)⊥ for j = µ+1, . . . , n.

Therefore, by evaluations (2) and (3) in Lemma 1.6, it is readily seen that S(λ) is

a solution of the BIP based on this choice of g1, . . . , gn and h1, . . . , hn if and only

if S(λ) is a solution of the bitangential NP set forth in Example 1.3. Examples

1.1 and 1.2 correspond to choosing µ = n and ν = n, respectively.

More elaborate examples involving derivatives can be constructed in much the

same way by taking advantage of the evaluations (4) and (5) in Lemma 1.6.
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A reformulation of the Basic Interpolation Problem. It is readily checked

that the mvf S(λ) ∈ Sp×q(Ω+) is a solution of the BIP if and only if

p(S∗gj − hj) = 0 for j = 1, . . . , µ

and

q′(Shj − gj) = 0 for j = µ+1, . . . , n.

In fact, since the first condition is automatically satisfied for j = µ+1, . . . , n

and the second condition is automatically satisfied for j = 1, . . . , µ, the indices

may be allowed to run from 1 to n in both cases. In other words, an mvf

S(λ) ∈ Sp×q(Ω+) is a solution of the BIP if and only if

gj − Shj ∈ Hp
2 (Ω+) for j = 1, . . . , n

and

−S∗gj + hj ∈ Hq
2 (Ω+)⊥ for j = 1, . . . , n.

This last pair of constraints can be stacked, yielding our final formulation:

Final formulation of the BIP. As before, the data for this problem is two

sets of vector-valued functions g1, . . . , gn and h1, . . . , hn, where

g1, . . . , gµ ∈ Hp
2 (Ω+),

h1, . . . , hµ ∈ Hq
2 (Ω+),

gµ+1, . . . , gn ∈ Hp
2 (Ω+)⊥,

hµ+1, . . . , hn ∈ Hq
2 (Ω+)⊥.

Then S(λ) ∈ Sp×q(Ω+) is said to be a solution of the BIP based on this given

set of data if [
Ip −S

−S∗ Iq

] [
gj

hj

]
∈ Hp

2 (Ω+) ⊕Hq
2 (Ω+)⊥

for j = 1, . . . , n.

This formulation is meaningful even if the gj and hj are not themselves in

Lp
2(Ω0) and Lq

2(Ω0), because it is the difference that comes into play. This is sig-

nificant in the study of interpolation problems with constraints on the boundary

Ω0. Thus for example, if Ω+ = D and ω1 ∈ T, then

g1(λ) =
ξ1

ρω1
(λ)

=
ξ1

1 − λω∗
1

does not belong to Hp
2 (D) and

h1(λ) =
η1

ρω1
(λ)

=
η1

1 − λω∗
1

does not belong to Hq
2 (D). Nevertheless it is meaningful to investigate the set

of mvfs S(λ) ∈ Sp×q(D) for which

g1 − Sh1 ∈ Hp
2 (D).

We shall not pursue this question here.
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3. Necessary Conditions for the Existence of a Solution to the

Basic Interpolation Problem

Theorem 3.1. If S(λ) ∈ Sp×q(Ω+) is a solution of the BIP based on the given

data g1, . . . , gn and h1, . . . , hn, then the n× n Hermitian matrix Q with entries

qij =





〈gj , gi〉 − 〈hj , hi〉 for i, j = 1, . . . , µ,

−〈Shj , gi〉 for i = 1, . . . , µ and j = µ+1, . . . , n,

−〈gj , gi〉 + 〈hj , hi〉 for i, j = µ+1, . . . , n,

(3.1)

is positive semidefinite.

Proof. Define

qij =

〈[
Ip −S

−S∗ Iq

] [
gj

hj

]
,

[
gi

hi

]〉
(3.2)

for i, j = 1, . . . , n. Then

Q = [qij ] ≥ 0,

since [
Ip −S(λ)

−S∗(λ) Iq

]
≥ 0

for a.e. point λ ∈ Ω0. The rest of the proof amounts to evaluating (3.2). This is

where the assumption that S(λ) is a solution of the BIP comes into play. There

are three basic cases, but it is convenient to begin the analysis of the first two

together.

Suppose first that 1 ≤ i ≤ µ. Then

qij = 〈gj − Shj , gi〉 + 〈−S∗gj + hj , hi〉
= 〈gj − Shj , gi〉 = 〈gj , gi〉 − 〈Shj , gi〉.

Now, if also 1 ≤ j ≤ µ, then

〈Shj , gi〉 = 〈hj , pS
∗gi〉 = 〈hj , hi〉,

whereas, if µ+1 ≤ j ≤ n, then 〈Shj , gi〉 cannot be reduced but 〈gj , gi〉 = 0.

These evaluations lead easily to the first two sets of formulas for qij . To verify

the last set, assume µ+1 ≤ i, j ≤ n. Then

qij = 〈gj − Shj , gi〉 + 〈−S∗gj + hj , hi〉 = 〈−S∗gj + hj , hi〉
= −〈gj , q

′Shi〉 + 〈hj , hi〉 = −〈gj , gi〉 + 〈hj , hi〉,

as claimed. The proof is complete. ˜

If g1, . . . , gn and h1, . . . , hn are chosen as in Example 2.1, it is readily checked

(with the aid of Cauchy’s formula) that

qij =

〈
ξj
ρωj

,
ξi
ρωi

〉
−

〈
ηj

ρωj

,
ηi

ρωi

〉
=
ξ∗i ξj − η∗i ηj

ρωj
(ωi)

for i, j = 1, . . . , µ, (3.3)
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whereas

qij = −
〈
ξj
δωj

,
ξi
δωi

〉
+

〈
ηj

δωj

,
ηi

δωi

〉
=

−ξ∗i ξj + η∗i ηj

ρωi
(ωj)

for i, j = µ+1, . . . , n.

(3.4)

These formulas are expressed totally in terms of the data of the problem. Thus

a necessary condition for the existence of a solution to the bitangential NP

problem of Example 1.3 is that the matrices exhibited in formulas (3.3) and

(3.4) are positive semidefinite.

Theorem 3.1 gives a necessary condition for the existence of a solution to the

BIP. In general this condition will not be sufficient unless additional structure is

imposed on the data g1, . . . , gn and h1, . . . , hn of the problem. In particular we

shall assume that the space

span

{[
gj

hj

]
: j = 1, . . . , µ

}

is a µ-dimensional Rα-invariant subspace of Hm
2 (Ω+) for some point α ∈ Ω+ and

that

span

{[
gj

hj

]
: j = µ+1, . . . , n

}

is a ν-dimensional Rα-invariant subspace of Hm
2 (Ω+)⊥ for some point α ∈ Ω−,

where Rα denotes the operator defined by the rule

(Rαf)(λ) =
f(λ) − f(α)

λ− α
, (3.5)

wherever it is meaningful.

4. R¸ Invariance

In this section we study finite-dimensional spaces of vector-valued functions

that are invariant under the action of Rα for at least one appropriately chosen

point α ∈ C. The contents are taken largely from [Dym 1994b, Section 3].

Theorem 4.1. Let M be an n-dimensional vector space of (m × 1)-vector-

valued functions that are meromorphic in some open nonempty set ∆ ⊂ C and

suppose further that M is Rα-invariant for some point α ∈ ∆ in the domain

of analyticity of M. Then M is spanned by the columns of a rational m × n

matrix-valued function of the form

F (λ) = V {M − λN
)−1

, (4.1)

where V ∈ C
m×n, M,N ∈ C

n×n,

MN = NM and M − αN = In. (4.2)

Moreover , λ ∈ ∆ is a point of analyticity of F if and only if the n × n matrix

M − λN is invertible.
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Proof. Let f1, . . . , fn be a basis for M and let

F (λ) =
[
f1(λ) · · · fn(λ)

]

be the m × n matrix-valued function with columns f1(λ), . . . , fn(λ). Then, be-

cause of the presumed Rα-invariance of the columns of F ,

RαF (λ) =
F (λ) − F (α)

λ− α
= F (λ)Eα

for some n× n matrix Eα independent of λ. Thus

F (λ)
(
In − (λ− α)Eα

)
= F (α),

and hence, since det
(
In − (λ− α)Eα

)
6≡ 0,

F (λ) = F (α)
(
In + αEα − λEα

)−1
,

which is of the form (4.1) with V = F (α), M = In + αEα and N = Eα.

Suppose next that F is analytic at a point ω ∈ ∆ and that u ∈ ker(M −ωN).

Then

F (λ)(M − λN)u = V u = 0,

first for λ = ω, and then for every λ ∈ ∆ in the domain of analyticity of F .

Thus, for all such λ,

(ω − λ)F (λ)Nu = F (λ)
(
M − λN − (M − ωN)

)
u = 0.

Since the columns of F (λ) are linearly independent functions of λ, we getNu = 0.

But this in conjunction with the prevailing assumption (M − ωN)u = 0 implies

that

u ∈ kerM ∩ kerN =⇒ u = 0 =⇒ M − ωN is invertible.

Thus we have shown that if F is analytic at ω, then M −ωN is invertible. Since

the opposite implication is easy, this serves to complete the proof. ˜

Corollary 4.2. If det(M − λN) 6≡ 0 and F (λ) = V (M − λN)−1 is a rational

m× n matrix-valued function with n linearly independent columns, then

(1) M is invertible if and only if F is analytic at zero, and

(2) N is invertible if and only if F is analytic at infinity and F (∞) = 0.

Moreover , if M is invertible F can be expressed in the form

F (λ) = C(In − λA)−1, (4.3)

whereas if N is invertible F can be expressed in the form

F (λ) = C(A− λIn)−1. (4.4)
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Proof. The first assertion is contained in the theorem; the second is obtained

in much the same way. More precisely, if limλ→∞ F (λ) = 0 and u ∈ kerN , then

F (λ)Mu = F (λ)(M − λN)u = V u.

Upon letting λ approach ∞, it follows that

V u = 0 =⇒ F (λ)Mu = 0 =⇒ Mu = 0 =⇒ u ∈ kerM ∩ kerN =⇒ u = 0.

Thus N is invertible. The other direction is easy, as are formulas (4.3) and (4.4).

Just take C = VM−1 and A = NM−1 in the first case, and C = V N−1 and

A = MN−1 in the second. ˜

Corollary 4.3. Let f be an (m×1)-vector-valued function that is meromorphic

in some open nonempty set ∆ ⊂ C and let α ∈ ∆ be a point of analyticity of f .

Then f is an eigenfunction of Rα if and only if it can be expressed in the form

f(λ) =
v

ρω(λ)

for one or more choices of ρω(λ) in Table 1 with ρω(α) 6= 0 and some nonzero

constant vector v ∈ C
m.

Linear independence. It seems worthwhile to emphasize that herein the n

columns of an m × n matrix-valued function F (λ) are said to be linearly in-

dependent if they are linearly independent in the vector space of continuous

(m× 1)-vector-valued functions on the domain of analyticity of F . If

F (λ) = C(In − λA)−1 or F (λ) = C(A− λIn)−1,

this is easily seen to be equivalent to

n−1⋂

j=0

kerCAj = 0;

that is, to the pair (C,A) being observable. Such a realization for F is minimal

in the sense of Kalman because (in the usual terminology; see [Kailath 1980], for

example) the pair (A,B) is automatically controllable:

n−1⋂

j=0

kerB∗A∗j = {0}

(or, equivalently, rank [B AB · · · An−1B] = n), since B = In.
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R¸-invariant subspaces of Hm

2
(Ω+) and Hm

2
(Ω+)?. Let

F1(λ) =

[
g1(λ) · · · gµ(λ)

h1(λ) · · · hµ(λ)

]
(4.5)

be an m× µ mvf with columns

fj(λ) =

[
gj(λ)

hj(λ)

]
∈ Hp

2 (Ω+) ⊕Hq
2 (Ω+),

and suppose that {F1(λ)u : u ∈ C
µ} is a µ-dimensional Rα-invariant subspace

of Hm
2 (Ω+) for some point α ∈ Ω+. This is meaningful because F1(λ) is analytic

in Ω+. Then it follows from Theorem 3.1 that F1(λ) admits a representation of

the form

F1(λ) = V (M − λN)−1.

Hence, since F1(λ) is analytic at the point λ = 0 if Ω+ = D and at the point

λ = ∞ with F1(∞) = 0 if Ω+ = C+ or Ω+ = Π+, it follows also that

F1(λ) =





[
C11

C21

]
(Iµ − λA1)

−1 with σ(A1) ⊂ D if Ω+ = D,

[
C11

C21

]
(λIµ −A1)

−1 with σ(A1) ⊂ Ω− if Ω+ = C+ or Ω+ = Π+,

(4.6)

where C11 ∈ C
p×µ, C21 ∈ C

q×µ and of course A1 ∈ C
µ×µ.

Next let

F2(λ) =

[
gµ+1(λ) · · · gn(λ)

hµ+1(λ) · · · hn(λ)

]
(4.7)

be an m× ν mvf with columns

fj(λ) =

[
gj(λ)

hj(λ)

]
∈ Hp

2 (Ω+)⊥ ⊕Hq
2 (Ω+)⊥

for j = µ+1, . . . , n and suppose that {F2(λ)u : u ∈ C
ν} is a ν-dimensional

Rα-invariant subspace of Hp
2 (Ω+)⊥ for some choice of α ∈ Ω−. This too is

meaningful because F2(λ) is analytic in Ω−. Then, by another application of

Theorem 3.1, F2(λ) admits a representation of the form

F2(λ) =

[
C12

C22

]
(λIν −A2)

−1 with σ(A2) ⊂ Ω+, (4.8)

where C12 ∈ C
p×ν , C22 ∈ C

q×ν and A2 ∈ C
ν×ν .

More explicit formulas, based on the Jordan decomposition of A1 and A2,

may be found in [Dym 1994b, Section 3.3; Dym 1989b].
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5. Back to the Basic Interpolation Problem

From now on we assume that the data of the BIP is chosen so that span{fj(λ) :

j = 1, . . . , µ} is a µ-dimensional Rα-invariant subspace of Hm
2 (Ω+) for some

point α ∈ Ω+ and span{fj(λ) : j = µ+1, . . . , n} is a ν-dimensional Rα-invariant

subspace of Hm
2 (Ω+)⊥ for some choice of α ∈ Ω−. In view of the analysis in the

previous section, this means that the data of the BIP is of the form

F (λ) = C(M − λN)−1, (5.1)

where

C =

[
C1

C2

]
=

[
C11 C12

C21 C22︸︷︷︸ ︸︷︷︸
µ ν

]}p
}q

, (5.2)

M − λN =





[
Iµ − λA1 0

0 λIν −A2

]
if Ω+ = D ,

[
λIµ −A1 0

0 λIν −A2

]
if Ω+ = C+ or Π+,

(5.3)

µ+ ν = n,

σ(A1) ⊂ D if Ω+ = D, σ(A1) ⊂ Ω− if Ω+ = C+ or Π+, (5.4)

and

σ(A2) ⊂ Ω+ for all three of the classical choices of Ω+. (5.5)

This means that the BIP is now fully specified in terms of the matrices C,

M and N , or equivalently, in terms of their block decompositions C11, C12, C21,

C22, A1 and A2.

Theorem 5.1. If the BIP that is specified in terms of C, M and N admits a

solution, then there exists an n × n matrix P ≥ 0 which solves the Lyapunov–

Stein equation

M∗PM −N∗PN = C∗JC if Ω+ = D, (5.6a)

M∗PN −N∗PM = 2πiC∗JC if Ω+ = C+, (5.6b)

M∗PN +N∗PM = −2πC∗JC if Ω+ = Π+. (5.6c)

Proof. Let S(λ) ∈ Sp×q(Ω+) be a solution of the BIP and define P by the rule

v∗Pu =

〈[
Ip −S(λ)

−S(λ)∗ Iq

]
F (λ)u, F (λ)v

〉
, (5.7)

where F (λ) is given by (5.1) and u and v are any vectors in C
n. Then clearly

P ≥ 0. The rest of the proof depends largely upon Theorem 3.1 and the special

form of the data. We shall present details only for the case Ω+ = D. Details for
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the other two classical choices of Ω+ may be found in [Dym 1994b]. Because of

the special block form of M and n, it is convenient to write P in the block form

P =

[
P11 P12

P21 P22

]}µ
}ν.

︸︷︷︸
µ

︸︷︷︸
ν

Then P is a solution of (5.6a) if and only if the following three equations are

satisfied:

P11 −A∗

1P11A1 = C∗

11C11 − C∗

21C21, (5.8)

A∗

1P12 − P12A2 = C∗

11C12 − C∗

21C22, (5.9)

A∗

2P22A2 − P22 = C∗

12C12 − C∗

22C22. (5.10)

By Theorem 3.1,

y∗P11x = 〈JF1(λ)x, F1(λ)y〉

for every choice of x and y in C
µ. Thus

y∗(P11 −A∗

1P11A1)x

= 〈JF1(λ)x, F1(λ)y〉 − 〈JF1(λ)A1x, F1(λ)A1y〉

= 〈JF1(λ)x, F1(λ)(Iµ − λA1)y〉 + 〈JF1(λ)(Iµ − λA1)x, F1(λ)λA1y〉

=

〈
JF1(λ)x,

[
C11

C21

]
y

〉
+

〈
J

[
C11

C21

]
, F1(λ)λA1y

〉

= y∗[C∗

11 C
∗

21]JF1(0)x+O

= y∗(C∗

11C11 − C∗

21C21)x,

which serves to prove (5.8).

Next, by the middle formula of (3.1),

y∗(A∗

1P12 − P12A2)x = −〈S(λ)C22(λIν −A2)
−1x, C11(Iµ − λA1)

−1A1y〉
+ 〈S(λ)C22(λIν −A2)

−1A2x, C11(Iµ − λA1)
−1y〉

= −〈S(λ)C22(λIν −A2)
−1λx, C11(Iµ − λA1)

−1λA1y〉
+ 〈S(λ)C22(λIν −A2)

−1A2x, C11(Iµ − λA1)
−1y〉

for every choice of x ∈ C
ν and y ∈ C

µ. But, by adding the term

〈
S(λ)C22(λIν −A2)

−1λx, C11(Iµ − λA1)
−1y

〉
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to the first inner product and subtracting it from the second, the last expression

can be rewritten as 1©− 2©, where

1© =
〈
λS(λ)C22(λIν −A2)

−1x, C11(Iµ − λA1)
−1(Iµ − λA1)y

〉

=
〈
λq′

(
S(λ)C22(λIν −A2)

−1x
)
, C11y

〉

=
〈
λC12(λIν −A2)

−1x, C11y
〉

= y∗C∗

11C12x

and

2© =
〈
S(λ)C22(λIν −A2)

−1(λIν −A2)x, C11(Iµ − λA1)
−1y

〉

=
〈
S(λ)C22x, C11(Iµ − λA1)

−1y
〉

=
〈
C22x, p

(
S(λ)∗C11(Iµ − λA1)

−1y
)〉

=
〈
C22x, C21(Iµ − λA1)

−1y
〉

= y∗C∗

21C22x.

Thus

1©− 2© = y∗(C∗

11C12 − C∗

21C22)x,

which serves to verify (5.9).

Finally, (5.10) is obtained in much the same way from the formula

y∗P22x = −
〈
JF2(λ)x, F2(λ)y

〉
,

which is valid for every choice of x and y in C
q and is itself obtained from

Theorem 3.1. ˜

Theorem 5.1 admits a converse: If the Lyapunov–Stein equation (5.6) admits a

nonnegative solution P , then the BIP is solvable. However, this is only part of

the story because if both µ ≥ 1 and ν = n − µ ≥ 1, then (5.6) can have many

solutions. To be more precise, under the spectral conditions that were imposed on

A1 and A2 in (5.4) and (5.5), the P11 and P22 blocks of every solution P of (5.6)

are the same, however, the P12 block is not unique unless σ(A∗
1) ∩ σ(A2) = ?.

This extra freedom can be used to impose more interpolation conditions and

leads to a more refined problem which we shall refer to as the augmented BIP.

For an instructive example, see [Dym 1989b, Section 10].

6. The Augmented Basic Interpolation Problem

The augmented BIP is formulated in terms of the data C,

M =

[
M11 0

0 M22

]}µ
}ν

, N =

[
N11 0

0 N22

] }µ
}ν ,

︸︷︷︸
µ

︸︷︷︸
ν

︸︷︷︸
µ

︸︷︷︸
ν

and a solution P ≥ 0 of the Lyapunov–Stein equation (5.6): more precisely,

S(λ) ∈ Sp×q(Ω+) is said to be a solution of the augmented BIP if

(1) S(λ) is a solution of the BIP, and
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(2) −
〈
S(λ)C22(M22−λN22)

−1y, C11(M11−λN11)
−1x

〉
= x∗P12y for every choice

of x ∈ C
µ and y ∈ C

ν .

Lemma 6.1. If S(λ) is a solution of the BIP based on C, M and N (subject to

the spectral conditions (5.4) and (5.5)) and if P is a nonnegative solution of the

Lyapunov–Stein equation (5.6), the following conditions are equivalent :

(1) −
〈
S(λ)C22(M22 − λN22)

−1y, C11(M11 − λN11)
−1x

〉
= x∗P12y

for every choice of x ∈ C
µ and y ∈ C

ν .

(2)

〈[
Ip −S(λ)

−S(λ)∗ Iq

]
F (λ)v, F (λ)u

〉
= u∗Pv

for every choice of u and v in C
n.

(3)

〈[
Ip −S(λ)

−S(λ)∗ Iq

]
F (λ)u, F (λ)u

〉
= u∗Pu

for every choice of u ∈ C
n.

(4)

〈[
Ip −S(λ)

−S(λ)∗ Iq

]
F (λ)u, F (λ)u

〉
≤ u∗Pu

for every choice of u ∈ C
n.

Proof. Suppose first that (4) holds for some given solution S(λ) of the BIP

and some given solution P ≥ 0 of the Lyapunov–Stein equation (5.6). Let u∗Qv

denote the inner product on the left-hand side of the equality in (2) for this

choice of S(λ). By (4), the matrix

X = P −Q =

[
X11 X12

X21 X22

]

is nonnegative. Therefore, since X11 is the µ × µ zero matrix and X22 is the

ν × ν zero matrix, the matrix

[
0 X12

X∗
12 0

]

is nonnegative. But this is only possible if X12 = 0. This serves to establish the

nontrivial half of the equivalence of (4) and (3). The equivalence of (3) and (2)

is a standard argument; the equivalence of (1) and (2) rests heavily on the proof

of Theorem 3.1 and the fact that S(λ) is assumed to be a solution of the BIP.

The details are left to the reader. ˜
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7. Reproducing Kernel Hilbert Spaces

A Hilbert space H of (m× 1)-vector-valued functions defined on some subset

∆ of C is said to be a reproducing kernel Hilbert space (RKHS) if there exists

an m×m mvf Kω(λ) on ∆ × ∆ such that, for every choice of ω ∈ ∆, u ∈ C
m,

and f ∈ H, we have Kωu ∈ H (as a function of λ), and

〈f,Kωu〉H = u∗f(ω). (7.1)

The main facts are these:

• The RK (reproducing kernel) is unique; that is, if Kω(λ) and Lω(λ) are both

RK’s for the same RKHS, then Kω(λ) = Lω(λ) for every choice of ω and λ

in ∆.

• Kα(β)∗ = Kβ(α). (7.2)

• For every choice of ω1, . . . , ωn in ∆ and u1, . . . , un in C
m, we have

n∑

i,j=1

u∗jKi(ωj)ui ≥ 0. (7.3)

Example 7.1. Hm
2 (Ω+) is an RKHS with RK

Kω(λ) = Im/ρω(λ)

for each of the classical choices of Ω+, where ρω(λ) and the corresponding inner

product are specified in Table 1. Basically this is just Cauchy’s theorem for

H2(Ω+).

Example 7.2 (H(S) spaces). For each choice of S(λ) ∈ Sp×q(Ω+), the kernel

Lω(λ) =
Ip − S(λ)S(ω)∗

ρω(λ)
(7.4)

is positive in the sense exhibited in inequality (7.3). Perhaps the easiest way to

see this is to observe that
n∑

i,j=1

ξ∗i Λαj
(αi)ξj = 〈g, g〉 −

〈
pS∗g, pS∗g

〉

with g =
∑n

j=1 ξj/ραj
; see Lemma 1.6 for help with the evaluation, if need be.

Because of this positivity, it follows on general grounds (see [Aronszajn 1950],

for example) that Lω(λ) is the reproducing kernel of exactly one RKHS, which

we shall designate by H(S). The following beautiful characterization of H(S) is

due to de Branges and Rovnyak [1966].

Theorem 7.3. Let S ∈ Sp×q(Ω+), and for f ∈ Hp
2 (Ω+) let

κ(f) = sup
{
‖f + Sg‖2 − ‖g‖2 : g ∈ Hq

2Ω+

}
. (7.5)

Then

H(S) =
{
f ∈ Hp

2 (Ω+) : κ(f) <∞
}
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and

‖f‖2
H(S) = κ(f).

Proof. A proof for Ω+ = D can be found in [de Branges and Rovnyak 1966],

but it goes through for the other two cases in just the same way. ˜

It is an instructive exercise to check that if S(λ) is isometric a.e. on Ω0, then

p ≥ q and

H(S) = Hp
2 	 SHq

2 .

A number of useful properties of the space H(S) as well as references to more

extensive lists are provided in [Dym 1994b, Section 6].

Example 7.4. Let M = {F (λ)u : u ∈ C
n}, where F (λ) is an m × n mvf with

linearly independent columns f1(λ), . . . , fn(λ), and let P be any n × n positive

definite matrix (that is, P > 0). Then the space M, endowed with the inner

product 〈
F (λ)u, F (λ)v

〉
M

= v∗Pu (7.6)

for every choice of u and v in C
n, is an RKHS with RK

Kω(λ) = F (λ)P−1F (ω)∗. (7.7)

The verification is by direct computation.

8. A Special Class of Reproducing Kernel Hilbert Spaces

We shall be particularly interested in RKHS’s of (m× 1)-vector-valued mero-

morphic functions in C with RK’s of a special form that will be described below

in Theorem 8.1. The theorem is an elaboration of a fundamental result from

[de Branges 1963]. It is formulated in terms of the polynomials a(λ) and b(λ)

given in Table 1 in order to obtain a statement that is applicable to each of the

three classical choices of Ω+.

A set ∆ is said to be symmetric with respect to Ω0 (or ρω(λ)) if for every

λ ∈ ∆ (except 0 for Ω0 = T) the point λo belongs to ∆; note that ρω(ωo) = 0.

Recall that ρω(λ) = a(λ)a(ω)∗ − b(λ)b(ω)∗.

Theorem 8.1. Let H be an RKHS of (m × 1)-vector-valued functions that are

analytic in an open nonempty subset ∆ of C symmetric with respect to Ω0. Then

the reproducing kernel Kω(λ) can be expressed in the form

Kω(λ) =
J − Θ(λ)JΘ(ω)∗

ρω(λ)
, (8.1)

for some choice of m×m matrix-valued function Θ(λ) analytic in ∆ and some

signature matrix J , if and only if the following two conditions hold :

(1) H is Rα-invariant for every α ∈ ∆.
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(2) The structural identity

〈
Rα(bf), Rβ(bg)

〉
H

−
〈
Rα(af), Rβ(ag)

〉
H

= |ab′ − ba′|2g(β)∗Jf(α) (8.2)

holds for every choice of α, β in ∆ and f, g in H.

Moreover , in this case, the function Θ(λ) that appears in (8.1) is unique up to

a J unitary constant factor on the right . If there exists a point γ ∈ ∆ ∩ Ω0, it

can be taken equal to

Θ(λ) = Im − ργ(λ)Kγ(λ)J. (8.3)

This formulation is adapted from [Alpay and Dym 1993b]; see especially Theo-

rems 4.1, 4.3, and 4.4 of that reference. The restriction to the three choices of

a(λ) and b(λ) specified earlier permits some simplification in the presentation,

because the terms r(a, b;α)f and r(b, a;α)f that intervene there are constant

multiples of Rα(af) and Rα(bf), respectively.

For the three cases of interest, the structural identity (8.2) can be reexpressed

as 〈
(I + αRα)f, (I + βRβ)g

〉
H

− 〈Rαf,Rβg〉H = g(β)∗Jf(α). (8.4)

if Ω+ = D,

〈Rαf, g〉H − 〈f,Rβg〉H − (α− β∗)〈Rαf,Rβg〉H = 2πig(β)∗Jf(α) (8.5)

if Ω+ = C+, and

〈Rαf, g〉H + 〈f,Rβg〉H + (α+ β∗)〈Rαf,Rβg〉H = −2πg(β)∗Jf(α) (8.6)

if Ω+ = Π+.

Formula (8.5) appears in [de Branges 1963]; formula (8.4) is equivalent to a

formula of Ball [1975], who adapted de Branges’ work to the disc, including an

important technical improvement from [Rovnyak 1968].

The role of the two conditions in Theorem 8.1 becomes particularly transpar-

ent when H is finite-dimensional. Indeed, if the n-dimensional space M consid-

ered in Example 7.4 is Rα invariant for some point α in the domain of analyticity

of F (λ), then, by Theorem 4.1, F (λ) can be expressed in the form

F (λ) = V (M − λN)−1 (8.7)

with M and N satisfying (4.2). Thus Rα-invariance forces the elements of M to

be rational of the indicated form. Since

(RβF )(λ) = F (λ)N(M − βN)−1

for every point β at which the matrix M − βN is invertible, that is, for every

β ∈ AF , the domain of analyticity of F , it is readily checked that

〈RαFu, Fv〉M = 〈FN(M − αN)−1u, Fv〉M

= v∗PN(M − αN)−1u, (8.8)
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and similarly that

〈Fu,RβFv〉M = v∗(M∗ − β∗N∗)−1N∗Pu (8.9)

and

〈RαFu,Rβv〉M = v∗(M∗ − β∗N∗)−1N∗PN(M − αN)−1u (8.10)

for every choice of α, β in AF and u, v in C
n. For each of the three special choices

of Ω+ under consideration, it is now readily checked that the structural identity

(8.2) reduces to a matrix equation for P by working out (8.4)–(8.6) with the

aid of (8.8)–(8.10). In other words, in a finite-dimensional Rα-invariant space

M with Gram matrix P , the de Branges structural identity is equivalent to a

Lyapunov–Stein equation for P . This was first established explicitly in [Dym

1989b] by a considerably lengthier calculation. If F is analytic at zero, we may

presume that M = In in (8.7) and take α = β = 0 in the structural identity

(8.2).

Theorem 8.2. Let F (λ) = V (M − λN)−1 be an m× n matrix-valued function

with det(M−λN) 6≡ 0 and linearly independent columns, and let the vector space

M = {F (λ)u : u ∈ C
n}

be endowed with the inner product

〈Fu, Fv〉M = v∗Pu,

based on an n × n positive definite matrix P . Then M is a finite-dimensional

RKHS with RK Kω(λ) given by (7.7).

The RK can be expressed in the form

Kω(λ) =
J − Θ(λ)JΘ(ω)∗

ρω(λ)

with ρω(λ) as in Table 1 if and only if P is a solution of the equation

M∗PM −N∗PN = V ∗JV for Ω+ = D, (8.11)

M∗PN −N∗PM = 2πiV ∗JV for Ω+ = C+, (8.12)

M∗PN +N∗PM = −2πV ∗JV for Ω+ = Π+. (8.13)

Moreover , in each of these cases Θ(λ) is uniquely specified up to a J unitary

constant multiplier on the right by the formula

Θ(λ) = Im − ργ(λ)F (λ)P−1F (γ)∗J (8.14)

for any choice of the point γ ∈ Ω0 ∩ AF .
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Proof. This is an easy consequence of Theorem 8.1 and the discussion preceding

the statement of this theorem. The basic point is that, because of the special

form of F , (8.4) holds if and only if P is a solution of (8.11); similarly (8.5) holds

if and only if P is a solution of (8.12), and (8.6) if and only if P is a solution of

(8.13). ˜

It is well to note that formula (8.14) is a realization formula for Θ(λ), and

that in the usual notation of (4.3) and (4.4) it depends only upon A,C and P .

It can be reexpressed in one of the standard A,B,C,D forms by elementary

manipulations.

Formulas (8.3) and (8.14) for Θ(λ) are obtained by matching the right-hand

sides of (8.1) and (8.9). This leads to the formula

Θ(λ)JΘ(ω)∗ = J − ρω(λ)F (λ)P−1F (ω)∗,

which is clearly a necessary constraint on Θ(λ) since M has only one reproducing

kernel, and hence any two recipes for it must agree. The final formula emerges

upon setting ω = γ ∈ Ω0 ∩ AF and then discarding J unitary constant factors

on the right such as Θ(γ)−1 and J . Thus the general theory of “structured”

reproducing kernel spaces as formulated in Theorem 8.1 yields formula (8.14).

However, once the formula is available, it can be used to check that

F (λ)P−1F (ω)∗ =
J − Θ(λ)JΘ(ω)∗

ρω(λ)
(8.15)

for every pair of points λ, ω in AF by straightforward calculation, using only the

fact that P is a solution of one of the equations (8.11)–(8.13), according to the

choice of Ω+. More information and references may be found in [Dym 1994b,

Section 5], which was used heavily in the preparation of this section.

9. Diversion on J-Inner Functions

An m × m mvf Θ(λ) that is meromorphic in Ω+ is said to be J-inner if it

meets the following two conditions, where AΘ denotes the domain of analyticity

of the mvf Θ(λ):

Θ(λ)∗JΘ(λ) ≤ J for λ ∈ Ω+ ∩ AΘ. (9.1)

Θ(λ)∗JΘ(λ) = J for a.e. pointλ ∈ Ω0. (9.2)

The evaluations in (9.2) are taken as nontangential boundary limits. Such limits

exist, because the inequality (9.1) insures that every entry in the mvf Θ(λ) can

be expressed as the ratio of two functions in S1×1(Ω+); see, for example, [Dym

1989a, Theorem 1.1].

The identity (8.15) implies that

J − Θ(ω)JΘ(ω)∗ = ρω(ω)F (ω)P−1F (ω)∗
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and hence that

Θ(ω)JΘ(ω)∗ ≤ J for ω ∈ Ω+ ∩ AΘ, (9.3)

Θ(ω)JΘ(ω)∗ = J for ω ∈ Ω0 ∩ AΘ. (9.4)

The constraints (9.2) and (9.3) are equivalent to the assertion that Θ(λ) is

J-inner, even though the “stars” are on the wrong side. The equivalence of (9.2)

and (9.4) is self-evident. That of (9.1) and (9.3) takes a little more doing; see

[Dym 1989a, pp. 16, 21], for example, for a couple of approaches. In any event,

we shall be able to derive most of what we need directly from (9.3) and (9.4)

without making use of the equivalence.

Upon writing

Θ(λ) =

[
Θ11(λ) Θ12(λ)

Θ21(λ) Θ22(λ)

]}p
}q

︸ ︷︷ ︸
p

︸ ︷︷ ︸
q

in the indicated block form, it is readily seen from the (2, 2) block of the inequality

(9.3) that

Θ22(λ)Θ22(λ)∗ ≥ Iq + Θ21(λ)Θ21(λ)∗

for every point λ ∈ Ω+ ∩ AΘ. This implies that Θ22(λ) is invertible for all such

points and hence that the m×m mvf

Σ(λ) =

[
Ip −Θ12(λ)

0 −Θ22(λ)

]−1 [
Θ11(λ) 0

Θ21(λ) −Iq

]
(9.5)

is well defined for λ ∈ Ω+ ∩ AΘ. Let [ ]−∗ stand for
(
[ ]∗

)−1
. The identity

Im − Σ(λ)Σ(ω)∗ =

[
Ip −Θ12(λ)

0 −Θ22(λ)

]−1 (
J − Θ(λ)JΘ(ω)∗

) [
Ip −Θ21(ω)

0 −Θ22(ω)

]−∗

,

(9.6)

which is readily checked by direct calculation, implies that Σ(λ) is contractive

and analytic in Ω+ ∩ AΘ and hence in fact analytic in all of Ω+. Thus Σ(λ) ∈
Sm×m(Ω+). The mvf Σ(λ) is termed the Potapov–Ginzburg transform of Θ(λ).

It is also unitary a.e. on Ω0 (when, as in the present case, Θ(λ) is J-inner; that

is, Θ(λ) being J-inner implies that Σ(λ) is inner).

By (9.5), the entries in the block decomposition

Σ(λ) =

[
Σ11(λ) Σ12(λ)

Σ21(λ) Σ22(λ)

]

are given by the formulas

Σ11(λ) = Θ11(λ) − Θ12(λ),Θ22(λ)−1Θ21(λ),

Σ21(λ) = −Θ22(λ)−1Θ21(λ),

Σ12(λ) = Θ12(λ)Θ22(λ)−1

Σ22(λ) = Θ22(λ)−1.
(9.7)
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Moreover, since Σ(λ) ∈ Sm×m(Ω+), it follows that Σ11(λ) ∈ Sp×p(Ω+), Σ12(λ) ∈
Sp×q(Ω+), Σ21(λ) ∈ Sq×p(Ω+), and Σ22(λ) ∈ Sq×q(Ω+). Consequently,

Θ21(λ)E(λ) + Θ22(λ) = Θ22(λ)
(
Iq − Σ21(λ)E(λ)

)

is invertible in Ω+ ∩ AΘ for every choice of E(λ) ∈ Sp×q(Ω+). Thus the linear

fractional transformation

TΘ[E] =
(
Θ11(λ)E(λ) + Θ12(λ)

)(
Θ21(λ)E(λ) + Θ22(λ)

)−1
(9.8)

is well defined for E(λ) ∈ Sp×q(Ω+). The following facts are readily checked:

TΘ[E] ∈ S
p×q(Ω+);

TΘ[0] = Σ12(λ); (9.9)

TΘ[E] = Σ12(λ) + Σ11(λ)E(λ)
(
Iq − Σ21(λ)E(λ)

)−1
Σ22(λ). (9.10)

It is also easy to check that, if Ψ(λ) also is J-inner, then

TΘΨ[E] = TΘ

[
TΨ[E]

]
. (9.11)

Linear fractional transformations of the form (9.10) were extensively studied

in [Redheffer 1960].

Theorem 9.1. If Θ(λ) is J-inner and Σ(λ) denotes the Potapov–Ginzburg

transform of Θ(λ) (that is, if Σ(λ) is given by (9.5)), and if

f(λ) =

[
g(λ)

h(λ)

]

belongs to the RKHS H(Θ), we have:

(1)

[
Ip −Σ12(λ)

−Σ12(λ)∗ Iq

] [
g(λ)

h(λ)

]
∈ Hp

2 (Ω+) ⊕Hq
2 (Ω+)⊥.

(2) Σ∗
11g ∈ Hp

2 (Ω+)⊥.

(3) Σ22h ∈ Hq
2 (Ω+) and

‖f‖2
H(Θ) = ‖g − Σ12h‖2 + ‖Σ22h‖2. (9.12)

Proof. This is Theorem 2.7 of [Dym 1989a] restated in the current notation. ˜

Corollary 9.2. In the setting of the theorem,

‖f‖2
H(Θ) =

〈[
Ip −Σ12(λ)

−Σ12(λ)∗ Iq

] [
g(λ)

h(λ)

]
,

[
g(λ)

h(λ)

]〉
. (9.13)

Proof. The right-hand side of (9.12) is equal to

〈g − Σ12h, g − Σ12h〉 + 〈Σ22h,Σ22h〉

= 〈g − Σ12h, g〉 − 〈Σ∗

12g, h〉 +
〈
(Σ∗

12Σ12 + Σ∗

22Σ22)h, h
〉
.
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But this is equal to the right-hand side of (9.13) since

Σ12(λ)Σ12(λ) + Σ22(λ)∗Σ22(λ) = Iq

for λ ∈ Ω0. ˜

10. Sufficiency When P > 0

To this point we know that if the BIP based on the matrices C, M and N

(subject to the spectral constraints imposed in (5.4) and (5.5)) admits a solution,

then there exists a solution P ≥ 0 of the Lyapunov–Stein equation (5.6) and of

the augmented BIP based on C, M , N and P . Our next objective is to establish

a converse when P > 0.

Theorem 10.1. If P is a positive definite solution of the Lyapunov–Stein equa-

tion (5.6), and if Θ(λ) is the J-inner mvf defined by (8.14), then TΘ[E] is a

solution of the augmented BIP for every choice of E(λ) ∈ Sp×q(Ω+).

Proof. Let S(λ) = TΘ[E] for some choice of E(λ) ∈ Sp×q(Ω+) and let

fj(λ) =

[
gj(λ)

hj(λ)

]

denote the j’th element in the associated RKHS H(Θ), where fj(λ) ∈ Hm
2 (Ω+)

for j = 1, . . . , µ and fj(λ) ∈ Hm
2 (Ω+)⊥ for j = µ+1, . . . , n. Also, let

f(λ) =

[
g(λ)

h(λ)

]
= F (λ)u

denote an arbitrary element of the same RKHS. We now proceed in steps.

Step 1.
(
g(λ) − S(λ)h(λ)

)
∈ Hp

2 (Ω+).

Proof of Step 1. Theorem 9.1 guarantees that

(
g(λ) − Σ12(λ)h(λ)

)
∈ Hp

2 (Ω+).

Therefore, in view of formula (9.10), it remains only to show that

Σ11(λ)E(λ)
(
Iq − Σ21E(λ)

)−1
Σ22(λ)h(λ) ∈ Hp

2 (Ω+) (10.1)

and hence, since

Σ11(λ)E(λ)
(
Iq − Σ21(λ)E(λ)

)−1 ∈ Hp×q
∞ (Ω+) (10.2)

in the present setting, this follows from part (3) of Theorem 9.1.

Step 2.
(
−S(λ)∗g(λ) + h(λ)

)
∈ Hq

2 (Ω+)⊥.
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Proof of Step 2. The proof is similar to that of Step 1: Theorem 9.1 guarantees

that (
−Σ21(λ)∗g(λ) + h(λ)

)
∈ Hq

2 (Ω+)⊥

and therefore, by (9.10), it remains only to show that

Σ22(λ)∗
(
Iq − Σ21(λ)E(λ)

)−∗
E(λ)∗Σ11(λ)∗g(λ) ∈ Hq

2 (Ω+)⊥.

But this goes through much as before except that now we invoke assertion (2)

instead of (3) of Theorem 9.1.

Step 3. −
〈
Σ12(λ)hj(λ), gi(λ)

〉
= pij for i = 1, . . . , µ and j = µ+1, . . . , n, where

pst denotes the (s, t) entry of P for s, t = 1, . . . , n.

Proof of Step 3. By the corollary to Theorem 9.1,

pij =
〈
fj(λ), fi(λ)

〉
H(Θ)

=

〈[
Ip −Σ12(λ)

−Σ12(λ)∗ Iq

] [
gj(λ)

hj(λ)

]
,

[
gi(λ)

hi(λ)

]〉

=
〈
gj(λ) − Σ12(λ)hj(λ), gi(λ)

〉
+

〈
−Σ12(λ)∗gj(λ) + hj(λ), hi(λ)

〉

for every choice of i, j = 1, . . . , n. But now, if i = 1, . . . , µ and j = µ+1, . . . , n,

this is easily seen to reduce to the asserted identity with the help of Step 2.

Step 4. −
〈
S(λ)hj(λ), gi(λ)

〉
= pij for i = 1, . . . , µ and j = µ+1, . . . , n.

Proof of Step 4. In view of Step 3 and formula (9.10), it remains to show that

−
〈
Σ11(λ)E(λ)

(
Iq − Σ21(λ)E(λ)

)−1
Σ22(λ)hj(λ), gi(λ)

〉
= 0

for i = 1, . . . , µ and j = µ+1, . . . , n. But this is easily checked since Theorem

9.1 guarantees that

Σ11(λ)∗gi(λ) ∈ Hp
2 (Ω+)⊥ (even for i = 1, . . . , n),

Σ22(λ)hj(λ) ∈ Hq
2 (Ω+) (even for j = 1, . . . , n),

and (
Iq − Σ21(λ)E(λ)

)−1 ∈ Hq×q
∞ (Ω+).

This completes the proof of the step and the theorem. ˜

We remark that most of this analysis goes through in one form or another for

problems with infinitely many interpolation constraints. Indeed Theorem 9.1

is applicable to infinite-dimensional spaces and the only point in the proof of

Theorem 10.1 that depends critically on the specified form of the BIP (including

the assumptions on σ(A1) and σ(A2)) is the assertion that

(
Iq − Σ21(λ)E(λ)

)−1 ∈ Hq×q
∞ (Ω+), (10.3)
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which was used implicitly in Steps 1 and 2 and explicitly in Step 4. In the

present setting, (10.3) can be justified by direct estimates based on the specific

formula for Σ21(λ) provided in (11.25). In more general settings, the most that

can be said is that
(
Iq − Σ21(λ)E(λ)

)−1
is an outer function in the Smirnov

class N
q×q
+ (Ω+). The needed estimates to justify the proof of Theorem 10.1 are

then obtained by applications of the maximum principle in the Smirnov class.

(Thus for example, in the proof of Step 1, (10.1) is established by showing first

that Σ11E
(
Iq −Σ21E

)−1 ∈ N
p×q
+ (Ω+). Then, since Σ22h ∈ Hq

2 (Ω+), the product

of these two terms belongs to N
p
+(Ω+) ∩ Lp

2(Ω+) and hence by the maximum

principle to Hp
2 (Ω+).) The author first learned the power of estimates in matrix

Smirnov classes from [Arov 1973]; much useful information may also be found in

[Katsnelson and Kirstein 1997].

The next theorem states that all solutions to the augmented BIP are obtained

by the parametrization furnished in Theorem 10.1. In order to keep the length

of the discussion under control, we shall rely a little more on outside references

than has been our practice to this point.

Theorem 10.2. If P is a positive definite solution of the Lyapunov–Stein equa-

tion (5.6), then every solution S(λ) of the augmented BIP based on this choice of

P can be expressed as a linear fractional transformation of the form S(λ) = TΘ[E]

in terms of the associated Θ(λ) for some choice of E(λ) ∈ Sp×q(Ω+).

Proof. Let S(λ) ∈ Sp×q(Ω+) be a solution of the augmented BIP based on P

and let X(λ) = [Ip −S(λ)]. Then, as follows from [Dym 1994b, pp. 205–206,

210], X(λ)F (λ) ∈ H(S) and the corresponding Gram matrix Q defined by the

rule

u∗Qv =
〈
X(λ)F (λ)v, X(λ)F (λ)u

〉
H(S)

for every choice of u and v in C
n is majorized by P , that is,

Q ≤ P. (10.4)

Now, in terms of the notation introduced in Example 7.2, the kernel

X(λ)Θ(λ)JΘ(ω)∗X(ω)∗

ρω(λ)
=
X(λ)JX(ω)∗

ρω(λ)
−X(λ)

(
J − Θ(λ)JΘ(ω)∗

ρω(λ)

)
X(ω)∗

= Λω(λ) −X(λ)F (λ)P−1F (ω)∗X(ω)∗.

Our next objective is to show that this kernel is positive, that is, that

k∑

i,j=1

y∗i
(
Λαj

(αi) − (XF )(αi)P
−1(XF )(αj)

∗
)
yj ≥ 0

for every choice of vectors y1, . . . , yk in C
p and points α1, . . . , αk in Ω+. In view

of (10.4), it is enough to show that this inequality holds with Q−1 in place of

P−1. But now as

F (λ) =
[
f1(λ) · · · fn(λ)

]
,
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the second term in the sum with P replaced by Q can be reexpressed as

y∗i (XF )(αi)Q
−1(XF )(αj)

∗yj =
n∑

u,v=1

y∗i (Xfu)(αi)(Q
−1)uv(Xfv)(αj)

∗yj

=
n∑

u,v=1

〈Xfu,Λαi
yi〉H(S)(Q

−1)uv〈Λαj
yj ,Xfv〉H(S).

Thus, upon setting

f0 =

k∑

ju=1

Λαj
yj ,

it now follows readily that

k∑

i,j=1

y∗i (XF )(αi)P
−1(XF )(αj)

∗yj ≤
n∑

u,v=1

〈Xfu, f0〉H(S)(Q
−1)uv〈f0,Xfv〉H(S)

=
∥∥Πf0(λ)

∥∥2

H(S)
,

where Π denotes the orthogonal projection of H(S) onto the subspace spanned

by the elements X(λ)fu(λ), for u = 1, . . . , n. The asserted inequality is now

clear since
k∑

i,j=1

y∗i Λαj
(αi)yj =

∥∥f0(λ)
∥∥2

H(S)
.

The desired conclusion now follows directly from [Dym 1989a, Theorem 3.8],

since the “admissibility” needed to invoke that theorem amounts to the kernel

dealt with above being positive. ˜

11. Explicit Formulas

In this section we shall provide explicit formulas for the mvfs Θ(λ) and Σ(λ)

in terms of the data C, M and N of the BIP and the solution P of the Lyapunov–

Stein equation when P > 0. We shall do this in a more general setting than is

needed for the three classical choices of Ω+ that were considered earlier because

it enhances the usefulness of the formulas and does not involve any extra work,

just a little extra notation.

To this end, let a(λ) and b(λ) denote a pair of functions that are defined and

analytic in an open nonempty connected set Ω ⊂ C and assume that the subsets

Ω+ =
{
λ ∈ Ω : |a(λ)|2 − |b(λ)|2 > 0

}

and

Ω− =
{
λ ∈ Ω : |a(λ)|2 − |b(λ)|2 < 0

}

are both nonempty. This implies that

Ω0 =
{
λ ∈ Ω : |a(λ)|2 − |b(λ)|2 = 0

}
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is nonempty and that in fact, as is shown in [Alpay and Dym 1996], Ω0 contains

an open arc. These definitions of Ω± and Ω0 are consistent with the earlier ones

and the choices Ω = C with a(λ) and b(λ) as in Table 1.

Let A ∈ C
n×n, B ∈ C

n×n, C1 ∈ C
p×n, C2 ∈ C

q×n and P ∈ C
n×n be fixed

matrices such that P ≥ 0,

A
∗PA − B

∗PB = C∗

1C1 − C∗

2C2, (11.1)

and the determinant of the mvf

G(λ) = a(λ)A − b(λ)B (11.2)

does not vanish identically: detG(λ) 6≡ 0 in Ω.

We shall also make frequent use of the n× n mvf

H(λ) = b(λ)A∗ − a(λ)B∗ (11.3)

and the m× n mvf

F (λ) = CG(λ)−1, (11.4)

where

C =

[
C1

C2

]
and m = p+ q.

The functions ρω(λ) and δω(λ) are expressed in terms of a(λ) and b(λ) just as

before:

ρω(λ) = a(λ)a(ω)∗ − b(λ)b(ω)∗ (11.5)

and

δω(λ) = a(ω)b(λ) − b(ω)a(λ) (11.6)

for every choice of λ and ω in Ω.

We shall refer to (11.1) as the General Lyapunov–Stein (GLS) equation. This

usage too is easily seen to be consistent with the Lyapunov–Stein equation (5.6),

which intervenes for the classical choices of Ω+ when one defines A and B in

terms of M and N via the formula

M − λN = a(λ)A − b(λ)B (11.7)

for the three sets of choices of a(λ) and b(λ) appearing in Table 1.

Some algebraic identities.

Lemma 11.1. The identity

ρω(λ)G(λ)∗PG(ω) + ρω(λ)∗H(λ)PH(ω)∗

= ρλ(λ)G(ω)∗PG(ω) + ρω(ω)H(λ)PH(λ)∗ (11.8)

holds for every pair of points λ and ω in Ω. It is independent of (11.1).
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Proof. This is a tedious but straightforward calculation, which does not depend

upon the basic identity (11.1). The proof amounts to identifying the coefficients

of like terms. Thus, for example, the coefficient of A∗PA on the left hand side

of (11.8) is equal to

ρω(λ)a(λ)∗a(ω) + ρω(λ)∗b(λ)b(ω)∗ = ρλ(λ)a(ω)∗a(ω) + ρω(ω)b(λ)b(λ)∗,

which is equal to the coefficient of A∗PA on the right-hand side of (11.8). The

coefficients of A∗PB, B∗PA and B∗PB are identified in the same way. ˜

Lemma 11.2. The identity

ρλ(λ)G(ω)∗PG(ω) + ρω(ω)H(λ)PH(λ)∗

= ρω(ω)G(λ)∗PG(λ) + ρλ(λ)H(ω)PH(ω)∗ (11.9)

holds for every pair of points λ and ω in Ω. It is independent of (11.1).

Proof. Let Lω(λ) denote the left-hand side of (11.8). Then since

Lω(λ) = Lλ(ω)∗,

the same invariance must hold true for the right-hand side of (11.8). ˜

Lemma 11.3. The identities

ρω(λ)G(λ)∗PG(ω) + ρω(λ)∗G(ω)∗PG(λ)

= ρλ(λ)G(ω)∗PG(ω)+ρω(ω)H(λ)PH(λ)∗+
∣∣ρω(λ)

∣∣2(A∗PA − B
∗PB) (11.10)

and

ρω(λ)H(ω)PH(λ)∗ + ρω(λ)∗H(λ)PH(ω)∗

= ρλ(λ)G(ω)∗PG(ω)+ρω(ω)H(λ)PH(λ)∗−
∣∣ρω(λ)

∣∣2(A∗PA − B
∗PB) (11.11)

hold for every pair of points λ and ω in Ω. They are both independent of (11.1).

This, too, can be verified by a tedious but straightforward calculation.

The mvf ∆ω(λ). Let

∆ω(λ) = G(ω)∗PG(λ) + ρω(λ)C∗

2C2 (11.12)

for every pair of points λ and ω in Ω. Clearly

∆ω(λ) = ∆λ(ω)∗. (11.13)

Lemma 11.4. If P is a solution of the GLS equation (11.1), then

∆ω(λ) = H(λ)PH(ω)∗ + ρω(λ)C∗

1C1 (11.14)

for every pair of points λ and ω in Ω.
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Proof. In view of (11.1), it suffices to show that

G(ω)∗PG(λ) −H(λ)PH(ω)∗ = ρω(λ)
(
A

∗PA − B
∗PB

)
. (11.15)

But this is a straightforward computation. ˜

Theorem 11.5. If P ≥ 0 is a solution of the GLS equation (11.1) and if

ω ∈ Ω+ ∪ Ω0, and

rank



P 1/2G(ω)

P 1/2H(ω)∗

C


 = n, (11.16)

then the following conclusions hold :

(1) ∆ω(λ) is invertible for every point λ ∈ Ω+.

(2) If ω ∈ Ω+, then ∆ω(λ) is invertible for every point λ ∈ Ω+ at which

rank

[
P 1/2G(λ)

C

]
= n. (11.17)

(3) If ω ∈ Ω0 and G(ω) is invertible, then ∆ω(λ) is invertible for every point

λ ∈ Ω0 \ {ω} at which the rank condition (11.17) holds.

(4) If ω ∈ Ω0 and G(ω) is invertible, then ∆ω(ω) is invertible if and only if

P > 0.

Proof. Suppose first that

∆ω(λ)y = 0

for some choice of λ and ω in Ω+∪Ω0 and y ∈ C
n. Then, by (11.12) and (11.14),

0 = y∗
(
ρω(λ)∗∆ω(λ) + ρω(λ)∆ω(λ)∗

)
y

= y∗
(
ρω(λ)∗(H(λ)PH(ω)∗+ρω(λ)C∗

1C1) + ρω(λ)(G(λ)∗PG(ω)+ρω(λ)C∗

2C2)
)
y

= y∗
(
ρλ(λ)G(ω)∗PG(ω) + ρω(ω)H(λ)PH(λ)∗ + |ρω(λ)|2(C∗

1C1 + C∗

2C2 )
)
y.

Therefore, since each of the summands is nonnegative for λ and ω in Ω+ ∪ Ω0,

it follows from Lemma 11.2 and the last line that

ρλ(λ)G(ω)∗PG(ω)y = 0,

ρλ(λ)H(ω)PH(ω)∗y = 0,

ρω(λ)C1y = 0,

ρω(ω)G(λ)∗PG(λ)y = 0,

ρω(ω)H(λ)PH(λ)∗y = 0,

ρω(λ)C2y = 0.

The rest of the argument proceeds in cases that amount to figuring out which of

the preceding six identities really come into play.

Case 1. If λ ∈ Ω+, then ρλ(λ) > 0 and |ρω(λ)| > 0, and hence

∆ω(λ)y = 0 =⇒



P 1/2G(ω)

P 1/2H(ω)∗

C


 y = 0 =⇒ y = 0,

in view of the rank assumption (11.16). This serves to establish assertion (1).
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Case 2. If λ ∈ Ω0 but ω ∈ Ω+, then |ρω(ω)| > 0 and |ρω(λ)| > 0 and hence

∆ω(λ)y = 0 =⇒
[
P 1/2G(ω)

C

]
y = 0 =⇒ y = 0,

in view of the rank assumption (11.17). This serves to establish assertion (2).

Case 3. If λ ∈ Ω0 and ω ∈ Ω0 but λ 6= ω, then |ρω(λ)| > 0. Hence ∆ω(λ)y = 0

implies Cy = 0. This conclusion comes from the last two of the six iden-

tities established above. It now follows further from the definition of ∆ω(λ)

that G(ω)∗PG(λ)y = 0 and hence, since G(ω) is assumed to be invertible, that

PG(λ)y = 0. But this in turn implies that P 1/2G(λ)y = 0, since P ≥ 0. Thus

we see that, in this case,

∆ω(λ)y = 0 =⇒
[
P 1/2G(ω)

C

]
y = 0 =⇒ y = 0

in view of the rank condition (11.17). This serves to complete the third assertion

and so too the proof, since the fourth assertion is obvious. ˜

Corollary 11.6. If P > 0 and G(ω) is invertible for some point ω ∈ Ω+ ∪Ω0,

then:

(1) ∆ω(λ) is invertible for every point λ ∈ Ω+.

(2) ∆ω(λ) is invertible for every point λ ∈ Ω0 at which

rank

[
G(λ)

C

]
= n. (11.18)

We now assume that P > 0 is a positive definite solution of the GLS equation

(11.1) and, for a fixed point γ ∈ Ω0 at which G(γ) is invertible, define

Θ(λ) = Im − ργ(λ)F (λ)P−1F (γ)∗J

for every point λ ∈ Ω at which G(λ) is invertible, just as in (8.3). (Strictly

speaking, it would be better to write Θγ(λ) instead of Θ(λ) in order to indicate

the dependence upon the “normalization” point γ, but this makes the formulas

involving subblocks awkward.)

Thus, upon setting

ϕω(λ) = ρω(λ)G(λ)−1P−1G(ω)−∗, (11.20)

for those points λ and ω in Ω at which the indicated inverses exist, it is readily

seen that

Θ11(λ) = Ip − C1ϕγ(λ)C∗

1 , (11.21)

Θ12(λ) = C1ϕγ(λ)C∗

2 , (11.22)

Θ21(λ) = −C2ϕγ(λ)C∗

1 , (11.23)

Θ22(λ) = Iq + C2ϕγ(λ)C∗

2 . (11.24)
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Since Θ(λ) is J-inner with respect to Ω+, the Potapov–Ginzburg transform

Σ(λ) is well defined (by formulas (9.5) and (9.7)) and is inner.

Theorem 11.7. If P > 0 is a solution of the GLS equation (11.1) and if γ ∈ Ω0

and G(γ) is invertible, then

Σ(λ) = Im − ργ(λ)

[
C1

−C2

]
∆γ(λ)−1

[
C∗

1 −C∗

2

]
(11.25)

and

Σ(λ)Σ(λ)∗ = Im − ρλ(λ)

[
C1

−C2

]
∆γ(λ)−1G(γ)∗PG(γ)∆γ(λ)−∗

[
C∗

1 −C∗

2

]

(11.26)

for every point λ ∈ Ω at which the indicated inverses exist .

The verification of these formulas is by direct calculation, with the help of the

following well known result:

Lemma 11.8. If X ∈ C
n×n, Y ∈ C

p×n, Z ∈ C
n×p and if X and X + ZY are

invertible, then Ip + Y X−1Z is invertible and

(Ip + Y X−1Z)−1 = Ip − Y (X + ZY )−1Z. (11.27)

Proof. It suffices to check that

(
Ip + Y X−1Z

)(
Ip − Y (X + ZY )−1Z

)
= Ip.

But this is a straightforward calculation. ˜

Proof of Theorem 11.7. Suppose first that G(λ) is invertible. Then, since

Θ22(λ) = Iq + ργ(λ)C2

(
G(γ)∗PG(λ)

)−1
C∗

2

and

G(γ)∗PG(λ) + ργ(λ)C∗

2C2 = ∆γ(λ)

is invertible for λ ∈ Ω+ ∪ Ω0 under the present assumptions by Theorem 11.5,

Lemma 11.8 guarantees that Θ22(λ) is invertible and that

Σ22(λ) = Θ22(λ)−1 = Iq − ργ(λ)C2∆γ(λ)−1C∗

2 . (11.28)

This serves to verify the (2, 2) block entry of (11.25).

Next, by (11.28) and (11.23),

Σ21(λ) = −Θ22(λ)−1Θ21(λ)

=
(
Iq − ργ(λ)C2∆γ(λ)−1C∗

2

)
C2ϕγ(λ)C∗

1

= C2

(
Iq − ργ(λ)∆γ(λ)−1C∗

2C2

)
ϕγ(λ)C∗

1 ,

which is readily seen to confirm the (2, 1) block entry of (11.25).
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The verification of the formulas for Σ12(λ) and Σ11(λ) is similar, though the

latter requires a bit more work (but just a bit, if you take advantage of the fact

that −Θ12Θ
−1
22 Θ21 = Θ12Σ21).

Finally, the verification of (11.26) is left to the reader. ˜

We remark that although Σ(λ) has been derived from Θ(λ), the given formulas

are meaningful at those points λ at which ∆γ(λ) is invertible. It is evident from

Theorem 11.5 that this can happen even if P and G(λ) are not invertible. Thus,

for example, Theorem 11.5 guarantees that:

Theorem 11.9. If P ≥ 0 is a solution of the GLS equation (11.1) and if γ ∈ Ω0

and

G(γ)∗PG(γ) + C∗

1C1 + C∗

2C2 > 0,

then:

(1) ∆γ(λ) is invertible at every point λ ∈ Ω+.

(2) ∆γ(λ) is invertible at every point λ ∈ Ω0 at which

G(λ)∗PG(λ) +
∣∣ργ(λ)

∣∣ (C∗

1C1 + C∗

2C2 ) > 0. (11.29)

Nevertheless, we shall not pursue this level of generality here. It is instructive,

however, to see how to work directly from formula (11.25). To this end, it is

convenient to first summarize the key properties of ∆γ(λ) that come into play.

Theorem 11.10. If P > 0 is a solution of the GLS equation (11.1) and if G(λ)

is invertible at every point λ ∈ Ω0, then:

(1) ∆γ(λ) is invertible at every point λ ∈ Ω+ ∪ Ω0.

(2) Σ(λ) is analytic on Ω+ ∪ Ω0 and unitary at every point λ ∈ Ω0.

(3) Σ11(λ) is invertible at every point λ ∈ Ω0 and

det Σ11(λ) =
det

(
H(λ)PH(γ)∗

)

det
(
∆γ(λ)

) . (11.30)

(4) Σ22(λ) is invertible at every point λ ∈ Ω0 and

det Σ22(λ) =
det

(
G(γ)∗PG(λ)

)

det
(
∆γ(λ)

) . (11.31)

Moreover , if Ω+ is chosen to be one of the three classical settings, then:

(5) Σ12(λ) and Σ21(λ) are strictly contractive on Ω+ ∪ Ω0; that is, there exists

a positive number δ < 1 such that
∥∥Σ12(λ)

∥∥ ≤ δ and ‖Σ21‖ ≤ δ

for every point λ ∈ Ω+ ∪ Ω0.

(6)
(
Iq − Σ21(λ)E(λ)

)−1 ∈ Hq×q
∞ (Ω+) for every choice of E(λ) ∈ Sp×q(Ω+).

(7) ∆γ(λ)−1u ∈ Hn
2 (Ω+) for every choice of u ∈ C

n.
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(8) ργ(λ)∆γ(λ)−1 ∈ Hn×n
∞ (Ω+).

Proof. The first four assertions are immediate from Theorems 11.9 and 11.7,

except perhaps for the formulas for the determinant. But these too are easy if

you take advantage of the fact that for X ∈ C
p×q and Y ∈ C

q×p,

det
(
Ip −XY

)
= det

(
Iq − Y X

)
.

Next, in view of the identities

Σ21(λ)Σ21(λ)∗ = Iq − Σ22(λ)Σ22(λ)∗,

Σ12(λ)Σ12(λ)∗ = Iq − Σ22(λ)Σ22(λ)∗,

valid for λ ∈ Ω0, it suffices to show that

‖Σ22‖ ≥ δ1 > 0

for every point λ ∈ Ω0. Since Σ22(λ) is contractive, it follows readily from the

singular value decomposition of Σ22(λ) that

∥∥Σ22(λ)
∥∥ ≥

∣∣det Σ22(λ)
∣∣.

Now if Ω0 is compact, then this does the trick, since
∣∣det Σ22(λ)

∣∣ 6= 0 for any point

λ ∈ Ω0 by formula (11.31) the assumptions on G(λ) and the first conclusion. The

final four assertions are easily established when Ω+ = D. The analysis for the

other two classical choices of Ω+ is more subtle, but may be completed by a finer

investigation of ∆γ(λ) as in [Dym 1996, pp. 206–208]. The details are left to the

reader. ˜

With the aid of Theorem 11.10, it is now not too difficult to show directly that

(under the hypotheses of that theorem) if

S(λ) = Σ12(λ) + Σ11(λ)E(λ)
(
Iq − Σ21(λ)E(λ)

)−1
Σ22(λ), (11.35)

then
(
C1 − S(λ)C2

)
G(λ)−1u ∈ Hp

2 (Ω+),

(
−S(λ)∗C1 + C2

)
G(λ)−1u ∈ Hq

2 (Ω+)⊥,

and

−
〈
S(λ)C2G(λ)−1

[
0

y

]
, C1G(λ)−1

[
x

0

]〉
=

[
x∗ 0

]
P

[
0

y

]

for every choice of E(λ) ∈ Sp×q(Ω+), u ∈ C
n, x ∈ C

µ and y ∈ C
ν . This yields an

independent check of Theorem 10.1, and exhibits a strategy that can be imitated

even when P ≥ 0 is singular.

12. P ≥ 0 and Other Remarks

We begin by looking backwards.
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About the first ten sections. The story begins with the observation that

matrix versions of a number of classical interpolation problems are all special

cases of a single general problem described in Section 2: the BIP. This problem

is formulated in terms of the columns fj(λ) of an m× n mvf

F (λ) = [f1(λ) · · · fn(λ)]

whose first µ columns span a µ-dimensional subspace M1 of Hm
2 (Ω+) and whose

last ν = n− µ columns span a ν-dimensional subspace M2 of Hm
2 (Ω+)⊥.

In Section 3 it is shown that if the BIP admits at least one solution S(λ) ∈
Sp×q(Ω+), then the n×n matrix Q defined by (3.1) must be positive semidefinite;

that is, the conditionQ ≥ 0 is a necessary condition for the existence of a solution

to the BIP. The remarkable fact is that if M1 is an Rα-invariant subspace of

Hm
2 (Ω+) for some α ∈ Ω+ and M2 is an Rα-invariant subspace of Hm

2 (Ω+)⊥

for some α ∈ Ω−, then this condition is also sufficient. The point is that the

Rα-invariance assumptions force F (λ) to be of the special form

F (λ) = C(M − λN)−1, (12.1)

where the matrices M and N are subject to certain spectral assumptions, as

is explained in (5.3)–(5.5). It then follows further that Q is a solution of the

Lyapunov–Stein equation (5.6). For one sided problems (that is, when µ = n

or ν = n) this is the whole story because under the special constraints (5.4)

and (5.5), the Lyapunov–Stein equation has only one solution. For two sided

problems this is not true unless σ(A∗
1) ∩ σ(A2) = ?. This extra freedom is used

to define the augmented BIP in Section 6. Now it turns out that if P > 0 is any

positive definite solution of the Lyapunov–Stein equation (5.6), then the space

M =
{
F (λ)u : u ∈ C

n
}

(12.2)

(with F (λ) as in (12.1)) endowed with the inner product

〈
F (λ)v, F (λ)u

〉
M

= u∗Pv (12.3)

is an RKHS of the special kind considered in Section 8. In particular its RK

is given in terms of a rational J-inner mvf Θ(λ) (of McMillan degree n) that

is uniquely determined by the space (that is, by the elements and the inner

product) up to a J unitary constant factor on the right. Moreover, as is explained

in Section 10,
{
TΘ[E] : E(λ) ∈ S

p×q(Ω+)
}

is a complete description of the set of all solutions to the augmented BIP based

on F (λ) and P (that is, on the elements of M and the inner product imposed

on M).
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What if P ≥ 0 is singular? If the rank of the n × n matrix P is equal to k,

where k < n, then the space M endowed with the inner product P is no longer a

Hilbert space. However, it turns out that there exists a k-dimensional subspace

M̃ of M that is Rα-invariant for every point α ∈ AF which is an RKHS with an

RK of the special form (8.1) based on a rational J-inner mvf Θ̃(λ) (of McMillan

degree k). Moreover, in this instance,

{
TeΘ[E] : E(λ) ∈ S

p×q(Ω+)
}

fulfill k of the n interpolation conditions. The remaining n−k conditions (which

are not all independent) are then met by imposing extra constraints on E(λ).

Some special cases illustrating this are given in [Dym 1989a, Chapter 7]. For

other approaches see [Ball and Helton 1986; Bruinsma 1991; Dubovoj 1984].

Existence and representation formulas for the case of singular P may also

be obtained by the methods introduced by Katsnelson, Kheifets, and Yuditskii

[Katsnelson et al. 1987]; see also [Kheifets and Yuditskii 1994; Kheifets 1988a;

1988b; 1990; 1998], the last of which appears in this volume. Later in this

section (after the next paragraph) we will discuss applications of this method to

the augmented BIP problem.

About Section 11. In this section explicit formulas are presented for Θ(λ) and

its Potapov–Ginzburg transform Σ(λ) in terms of the data C, M , N and P when

P > 0. It is then indicated how to verify that

Σ12(λ) + Σ11(λ)E(λ)
(
Iq − Σ21(λ)E(λ)

)−1
Σ22(λ) (12.4)

is a solution of the augmented BIP for every choice of E(λ) ∈ Sp×q(Ω+) directly

from these formulas. This gives a second independent proof of this fact in this

more general setting. In fact every solution of the augmented BIP can be ex-

pressed in this form. Moreover, although we do not pursue this here, large parts

of this analysis in terms of Σ(λ) is valid for matrices P ≥ 0 that are singular.

The Abstract Interpolation Problem of Katsnelson, Kheifets, and Yu-

ditskii. The problem of establishing the existence and parametrization of solu-

tions to the augmented BIP in the disc fits naturally into the domain of problems

that can be resolved within the framework of the Abstract Interpolation Problem

of [Katsnelson et al. 1987] that was referred to just above. The starting point is

the assumption that there exists an n×n positive semidefinite solution P of the

GLS equation (5.6a). The idea is to rewrite (5.6a) as

M∗PM + C∗

2C2 = N∗PN + C∗

1C1 (12.5)
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and then to define an isometric colligation V : DV → RV , where

DV =

{[
P 1/2M

C2

]
x : x ∈ C

n

}
⊂ C

n ⊕ C
q,

RV =

{[
P 1/2N

C1

]
x : x ∈ C

n

}
⊂ C

n ⊕ C
p.

The following facts then follow from the general analysis in [Katsnelson et al.

1987]:

(1) The set of all solutions to the augmented BIP is equal to the set of char-

acteristic functions of those unitary colligations U that extend V (that is,

U |DV
= V ) and have the same “input” space C

q and the same “output”

space C
p as V .

(2) The set of all such characteristic functions (and hence the set of all solutions

to the augmented BIP in the disc) is equal to the set of all p × q mvf’s of

the general form (12.4) except that here Ω+ = D and E(λ) is an element in

Sp′
×q′

(D), where q′ = dim
(
C

n+q	DV

)
, p′ = dim

(
C

n+p	RV

)
and Σ(λ) is the

characteristic function of a very special unitary colligation from C
n⊕C

p′ ⊕C
q

onto C
n⊕C

p⊕C
q′

(which is not of the type referred to in (1) because the input

and output spaces have been enlarged to C
p′ ⊕C

q and C
p⊕C

q′

, respectively).

The description of the characteristic functions of unitary colligations that extend

a given isometric colligation originates in the work of Arov and Grossman [1983;

1992]. See also [Kheifets 1988a; 1988b; 1990] for applications to the Abstract

Interpolation Problem of [Katsnelson et al. 1987], and [Dym and Freydin 1997a;

1997b] for an application of these methods to the BIP problem in the setting

of upper triangular operators. A useful discussion of applications of unitary

colligations and of the Arov–Grossman formula may be found in [Arocena 1994].

Analogues of the problem of Katsnelson, Kheifets, and Yuditskii in the

setting of Section 11. Here we exhibit a connection between the formulas that

emerge from the analysis in Section 11 and the formulas that emerge by adapting

the strategy of [Katsnelson et al. 1987], as outlined in the preceding subsection,

to the setting of Section 11. A full analysis of these calculations will appear

elsewhere.

Let P be a nonnegative solution of the GLS equation (11.1). Then Lemma

11.4 guarantees that

∆ω(ω) = G(ω)∗PG(ω) + ρω(ω)C∗

2C2 = H(ω)PH(ω)∗ + ρω(ω)C∗

1C1 . (12.6)

Clearly ∆ω(ω) is positive semidefinite for every point ω ∈ Ω+. Fix such a point

and let

W1 =

[
P 1/2G(ω)

ρω(ω)1/2C2

]
and W2 =

[−P 1/2H(ω)∗

ρω(ω)1/2C1

]
.
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Then, in view of (12.6), V : W1x→W2x is an isometry from

DV = {W1x : x ∈ C
n} ⊂ C

n ⊕ C
q

onto

RV = {W2x : x ∈ C
n} ⊂ C

n ⊕ C
p.

Let k = dim DV = dim RV . Then q′ = dim D⊥
V = n + q − k, p′ = dim R⊥

V =

n+ p− k, and k ≤ n, with equality if and only if ∆ω(ω) > 0. For the time being

we shall assume only that k ≥ 1 and shall let

W⊥

1 ∈ C
(n+q)×q′

and W⊥

2 ∈ C
(n+p)×p′

be isometric matrices whose columns span D⊥
V and R⊥

V , respectively.

The next step is to define the matrix

P =



U11 U12 U13

U21 U22 U23

U31 U32 U33



}n
}p
}q′

.

︸︷︷︸
n

︸︷︷︸
q

︸︷︷︸
p′

by the formulas
[
U11 U12

U21 U22

]
= W2(W

∗

1W1)
−1W ∗

1 , [U31 U32] = (W⊥

1 )∗,

[
U13

U23

]
= W⊥

2 ,

and U33 = 0.

It is readily checked that the formulas W1(W
∗
1W1)

−1W ∗
1 , W2(W

∗
2W2)

−1W ∗
2

and W2(W
∗
1W1)

−1W ∗
1 are meaningful single-valued mappings when the inverses

are interpreted as inverse images even if W ∗
1W1 = W ∗

2W2 is not invertible and

furthermore, since

In+q −W1(W
∗

1W1)
−1W ∗

1 = W⊥

1 (W⊥

1 )∗

and

In+p −W2(W
∗

2W2)
−1W ∗

2 = W⊥

2 (W⊥

2 )∗,

that U is unitary. This matrix U corresponds to the special unitary colligation

singled out in the last subsection.

The next step is to define the mvf

Σ(λ) =

[
Σ11(λ) Σ12(λ)

Σ21(λ) Σ22(λ)

]}p
}q′

︸ ︷︷ ︸
p′

︸ ︷︷ ︸
q

=

[
U23 U22

0 U32

]
+ ψω(λ)

[
U21

U31

] (
I − ψω(λ)U11

)−1
[U13 U12], (12.7)
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where

ψω(λ) =
δω(λ)

ρω(λ)
.

This mvf is the natural analogue of the characteristic function of U in this setting.

It is well defined for λ ∈ Ω+ since

σ(λ) =
b(λ)

a(λ)
and ψω(λ) =

a(ω)

a(ω)∗

(
σ(λ) − σ(ω)

1 − σ(λ)σ(ω)∗

)

are contractive for λ ∈ Ω+.

From now on we shall assume that ∆ω(ω) > 0, even though many of the

formulas are meaningful without this restriction. Then, with the help of the

identity

ρω(λ)∆ω(ω) + δω(λ)G(ω)∗PH(ω)∗ = ρω(ω)∆ω(λ), (12.8)

it is readily checked that

(
In−ψω(λ)U11

)−1
U12 = −ρω(ω)−1/2ρω(λ)P 1/2H(ω)∗∆ω(λ)−1C∗

2 , (12.9)

U21

(
In−ψω(λ)U11

)−1
= ρω(ω)−1/2ρω(λ)C1∆ω(λ)−1G(ω)∗P 1/2, (12.10)

(
In−ψω(λ)U11

)−1
= In−ρω(ω)−1δω(λ)P 1/2H(ω)∗∆ω(λ)−1G(ω)∗P 1/2. (12.11)

Therefore, by direct substitution of these last three formulas into the entries of

formula (12.7), we obtain

Σ12(λ) = U22 + ψω(λ)U21

(
I − ψω(λ)U11

)−1
U12 = ρω(λ)C1∆ω(λ)−1C∗

2 ,

Σ11(λ) = U23 + ψω(λ)U21

(
In − ψω(λ)U11

)−1
U13

= [ψω(λ)U21

(
In − ψω(λ)U11

)−1 ... Ip]

[
U13

U23

]

= [ρω(ω)−1/2δω(λ)C1∆ω(λ)−1G(ω)∗P 1/2 ... Ip]W
⊥

2 ,

Σ22(λ) = U32 + ψω(λ)U31

(
In − ψω(λ)U11

)−1
U12

= [U31 U32]

[
ψω(λ)

(
In − ψω(λ)U11

)−1
U12

Iq′

]

= (W⊥

1 )∗
[−ρω(ω)−1/2δω(λ)P 1/2H(ω)∗∆ω(λ)−1C∗

2

Iq

]
,

Σ21(λ) = ψω(λ)U31

(
In − ψω(λ)U11

)−1
U13

= ψω(λ)(W⊥

1 )∗

×
[
In
0

](
In−ρω(ω)−1δω(λ)P 1/2H(ω)∗∆ω(λ)−1G(ω)∗P 1/2

)
[In 0]W⊥

2 .
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If rankP = r and r < n, we can write the isometric matrices W⊥
1 and W⊥

2 as

follows (I wish to thank Vladimir Bolotnikov for suggesting this decomposition,

which led to some improved formulas in this subsection):

W⊥

1 =

[
X Y1

0 Z1︸ ︷︷ ︸ ︸ ︷︷ ︸
n− r q+r−k

]}n
}q

and W⊥

2 =

[
X Y2

0 Z2︸ ︷︷ ︸ ︸ ︷︷ ︸
n− r p+r−k

]}n
}p

, (12.12)

where the columns of X are an orthonormal basis for kerP and hence are inde-

pendent of ω. We shall keep this notation for r = n also.

Theorem 12.1. If ω ∈ Ω+ and rankP = r, the block entries in the “character-

istic function” Σ(λ) defined by the formulas (12.7) can be expressed by

Σ11(λ) = [ 0 Σ̃11(λ)︸ ︷︷ ︸ ︸ ︷︷ ︸
n− r p+r−k

] }p , Σ12(λ) = ρω(λ)C1∆ω(λ)−1C∗

2 ,

Σ21(λ) =

[
ψω(λ)In−r 0

0 Σ̃21(λ)︸ ︷︷ ︸
p+r−k

]

}q+r−k
, Σ22(λ) =

[
0

Σ̃22(λ)︸ ︷︷ ︸
q

]}n−r
}q+r−k

,

where

Σ̃11(λ) = Z2 + ρω(ω)−1/2δω(λ)C1∆ω(λ)−1G(ω)∗P 1/2Y2,

Σ̃21(λ) = ψω(λ)Y ∗

1

(
In − ρω(ω)−1δω(λ)P 1/2H(ω)∗∆ω(λ)−1G(ω)∗P 1/2

)
Y2,

Σ̃22(λ) = Z∗

1 − ρω(ω)−1/2δω(λ)Y ∗

1 P
1/2H(ω)∗∆ω(λ)−1C∗

2 ,

and the entries Y1, Z1, Y2, Z2 from the second block columns of W⊥
1 and W⊥

2

depend upon ω.

Thus, upon writing ε(λ) ∈ Sp′
×q′

in the block form

ε(λ) =

[
ε11(λ) ε12(λ)

ε21(λ) ε22(λ)︸ ︷︷ ︸ ︸ ︷︷ ︸
n− r q+r−k

]}n−r
}p+r−k

,

it is readily checked that

Σ21(λ) + Σ11(λ)ε(λ)
(
Iq′ − Σ21(λ)ε(λ)

)−1
Σ22(λ)

= Σ21(λ) + Σ̃11(λ)ε̃(λ)
(
Iq′−(n−r) − Σ̃21(λ)ε̃(λ)

)−1
Σ̃22(λ),

where

ε̃(λ) = ε22(λ) + ε21(λ)ψω(λ)
(
In−r − ψω(λ)ε11(λ)

)−1
ε12(λ).

This leads easily to the following result:
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Theorem 12.2. If rankP = r, then

{
Σ12 + Σ11ε(Iq′ − Σ21ε)

−1Σ22 : ε ∈ S
p′
×q′}

=
{
Σ12 + Σ̃11ε̃(Iq′′ − Σ̃21ε̃)

−1Σ̃22 : ε̃ ∈ S
p′′

×q′′}
,

where p′′ = p′ − n+ r and q′′ = q′ − n+ r.

The formulas

[
−H(ω)P 1/2 ρω(ω)1/2C∗

1

]
W⊥

2 = 0 and (W⊥

1 )∗
[
P 1/2G(ω)

ρω(ω)1/2C2

]
= 0

permit additional simplifications.

Upon making use of the identities

δω(λ)G(ω)∗ + ρω(λ)H(ω) = ρω(ω)H(λ)

and

δω(λ)H(ω)∗ + ρω(λ)G(ω) = ρω(ω)G(λ),

and then letting ω tend to Ω0, we obtain:

Σ̃11(λ) =
(
Ip − ρω(λ)C1∆ω(λ)−1C∗

1

)
Z2,

Σ̃21(λ) = ψω(λ)Y ∗

1 Y2 + ρω(λ)Z∗

1C2∆ω(λ)−1C∗

1Z2,

Σ̃22(λ) = Z∗

1

(
Iq − ρω(λ)C2∆ω(λ)−1C∗

2

)
.

If ∆ω(ω) > 0 for ω ∈ Ω0, then n = r and Y1 = Y2 = 0, and we may choose

Z1 = Iq and Z2 = Ip. Then the formulas in Theorem 12.1 agree with the formula

for Σ(λ) in Theorem 11.7, which was derived by an entirely different strategy.

Other methods, other problems. The analysis presented here is based largely

on [Dym 1989a; 1989b; 1994b] and subsequent extensions. There are many

other approaches. The books [Ball et al. 1990; Foiaş and Frazho 1990; Hel-

ton et al. 1987] reflect three other schools of thought, and each contains an

extensive bibliography and notes to the literature. Additional sources may be

found in [Dubovoj et al. 1992; Dym 1994a]; see also [Arov 1993; Ivanchenko and

Sakhnovich 1994].
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1994.

[Lev-Ari and Kailath 1986] H. Lev-Ari and T. Kailath, “Triangular factorization
of structured Hermitian matrices”, pp. 301–324 in I. Schur methods in operator

theory and signal processing, edited by I. Gohberg, Oper. Theory Adv. Appl. 18,
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